Comparing implementations of stacks and
continuations

Kavon Farvardin
John Reppy

University of Chicago

March 2020



Introduction

Motivation

>

March 2020

Compilers for concurrent and parallel languages can benefit from
having an Intermediate Representation (IR) that supports operations
on lightweight user-space threads.

Such an IR can then represent the runtime-system mechanisms for
concurrency/parallelism.

Inlining of runtime-system code into the application code then
enables cross-layer optimizations.

We have followed this approach in our Parallel ML (PML) compiler,
which is part of the Manticore project.

We are exploring the tradeoffs between several different runtime
representations of threads in our compiler using LLVM.

WG2.8 — Zion



Introduction

Representing threads in an IR

» How should thread state and operations on threads be represented in
an IR for a concurrent or parallel language?

» One principled approach is to represent a suspended thread as a
continuation.

» There is a long history of using surface-language continuations
(callce) to implement multithreading.

There are a number of different approaches to incorporating continuations
in a compiler’s IR.

» Appel-style CPS representation — all continuations are explicit

> Kelsey-style CPS representation — explicit continuations with
annotations

» ANF with continuation binders — select continuations are reified

March 2020 WG2.8 — Zion



Introduction

Continuations in an IR

» ANF+Continuations works well for writing runtime code and can be
easily converted to the other representations or directly compiled to

target code.
» Our PML compiler uses an ANF-style IR extended with continuation
operations called BOM.
PML compiler L
' e @°°°&

<° &
—>{BOM R CIPRS IO\ CIEG I MLRISC Ix86-64

March 2020 WG2.8 — Zion



Introduction

Representing threads in the BOM IR (continued ...)

(exp) == let (x1,...,x,) = (prim) in (exp)

| fun f (z1,...,2,) = (exp) in (exp)
| cont k (x1,...,2,) = (exp) in (exp)
| if z then (exp) else (exp)
| aPPlYf (xla'“7xn)
| throwk (z1,...,2,)

(prim) ::= create_thread (f)
| other primitive operations and values

Three forms for continuations:

March 2020 WG2.8 — Zion



Introduction

Representing threads in the BOM IR (continued ...)

(exp) == let (x1,...,x,) = (prim) in (exp)

| fun f (z1,...,2,) = (exp) in (exp)
| cont k (x1,...,2,) = (exp) in (exp)
| if z then (exp) else (exp)
| aPPlYf (xlv'“7xn)
| throwk (z1,...,2,)

(prim) ::= create_thread (f)
| other primitive operations and values

Three forms for continuations:

» cont bindings

March 2020 WG2.8 — Zion



Introduction

Representing threads in the BOM IR (continued ...

(exp) == let (x1,...,x,) = (prim) in (exp)
| fun f (z1,...,2,) = (exp) in (exp)
| cont k (x1,...,2,) = (exp) in (exp)
| if z then (exp) else (exp)
|
|

apply f (xlv ) xn)
throw k (21, ..., 2,)

(prim) ::= create_thread (f)
| other primitive operations and values
Three forms for continuations:
» cont bindings

» throw expressions

March 2020 WG2.8 — Zion

)



Introduction

Representing threads in the BOM IR (continued ...

(exp) == let (x1,...,x,) = (prim) in (exp)
| fun f (z1,...,2,) = (exp) in (exp)
| cont k (x1,...,2,) = (exp) in (exp)
| if z then (exp) else (exp)
|
|

apply f (xlv ) xn)
throw k (21, ..., x,)

(prim) ::= create_thread (f)
| other primitive operations and values
Three forms for continuations:
» cont bindings
» throw expressions
> create_thread operator

March 2020 WG2.8 — Zion

)



Introduction

Example: thread creation

Thread creation
fun fork f =

fun £’ () = (
apply £ ();
throw (Sched.dequeue ()) ())

let childK = thread_create f’

in

apply Sched.enqueue childK

We can also run the child thread first
fun fork f = cont parentK = ()
in
fun £’ () (
apply £ ()7
throw (Sched.dequeue ()) ())
let childK = thread_create f’
in
apply Sched.enqueue parentkK;
throw childK ()

March 2020 WG2.8 — Zion



Introduction

Example: context switch

Coroutine style explicit context switch.
fun yield () = cont k() = ()
in
Sched.enqueue k;
throw (Sched.dequeue ()) ()

We can build all kinds of concurrency and parallelism mechanisms with
this IR:

» locks and condition variables

P> message-passing mechanisms
» work-stealing fork-join
>

futures

March 2020 WG2.8 — Zion



Compiler support

Implementing continuations

Given an IR with continuations; we have to decide on a semantics for
continuations and a supporting runtime model.

P first-class continuations
P one-shot continuations (may only be thrown to once)
P escape-continuations (essentially set jmp/longjmp)

First-class continuations are the most expressive and do not require any
restrictions on their use in the IR
For example, we do not need to define create_thread as a primitive.
fun create_thread f =
cont thdK () = (
apply £ ();
throw (Sched.dequeue ()) ())
in
thdK

March 2020 WG2.8 — Zion



Compiler support
Implementing continuations (continued ...)

» Implementing first-class continuations on a traditional stack, however,
is quite challenging.

» Early Scheme compilers used environment analysis to map
continuations to stack-allocated frames (e.g., Rabbit and Orbit).
Note that Kelsey’s IR encodes this analysis.

» Stack copying would be used to implement captured continuations.

» Segmented stacks were introduced (Chez Scheme) as a way to
implement callcc more efficiently.

» Heap-allocated continuations (SML/NJ) provided a very simple
implementation that abandoned the stack.

March 2020 WG2.8 — Zion 9



Runtime representations
Choosing an approach

» Heap-allocated continuations provide a simple implementation of
CPS, but giving up the stack has potentially significant performance

Ccosts.
i &
PML compiler \\eﬂ‘ o(\\@
o o
d RS
& [crs 19%_[Tora
—> BOM IR R R MLRISC x86-64

March 2020 WG2.8 — Zion



Runtime representations
Choosing an approach

» Heap-allocated continuations provide a simple implementation of
CPS, but giving up the stack has potentially significant performance
costs.

» Previous empirical comparisons of runtime models are controversial
[Appel-Shao *96] or dated [Clinger ef al. 88 & *99].

i &
PML compiler \\eﬂ‘ o(\\@
o o
d R
& [crs 19%_[Tora
—> BOM IR R R MLRISC x86-64

March 2020 WG2.8 — Zion 10



Runtime representations
Choosing an approach

» Heap-allocated continuations provide a simple implementation of
CPS, but giving up the stack has potentially significant performance
costs.

» Previous empirical comparisons of runtime models are controversial
[Appel-Shao *96] or dated [Clinger ef al. 88 & *99].

> We are comparing five different runtime representations for
continuations techniques using the LLVM code generator framework.

i &
PML compiler \\eﬂ\ o(\&
o o
d R
& [Tcrs 1o [ cra 1
—> BOM IR R R > [t x86-64

LLVM

March 2020 WG2.8 — Zion 10



Runtime representations

Fixed-size contiguous stacks
Standard calling convention; crash on overflow.

Pros and cons:
+ natural LLVM model
+ good locality across call/return
+ hardware optimized for return branch prediction
- stack overflow is a problem
- GC interface is more complicated and expensive
- potential race conditions when switching stacks
- thread overhead is high

- can run out of stack space

March 2020 WG2.8 — Zion 11



Runtime representations

Resizable contiguous stacks

Calling convention checks for overflow; grow stack on overflow by
copying to new memory object.

Pros and cons:

+

good locality across call/return
+ hardware optimized for return branch prediction

+ better space overhead than contiguous stacks

specialized calling convention

GC interface is more complicated and expensive

potential race conditions when switching stacks

thread creation overhead is high

March 2020 WG2.8 — Zion



Runtime representations

Segmented stacks

Calling convention checks for overflow; switch to new segment on
overflow.

Pros and cons:
+ good locality across call/return
+ hardware optimized for return branch prediction
+ more flexible management of space overhead than resizable stacks
e specialized calling convention
- GC interface is more complicated and expensive
- potential race conditions when switching stacks
- thread creation overhead is high

- additional runtime system complexity

March 2020 WG2.8 — Zion



Runtime representations

Heap-allocated linked stack frames

Stack frames are heap-allocated mutable objects that are organized into a
linked list.

Pros and cons:
+ good locality across call/return
+ hardware optimized for return branch prediction
+ better space overhead than contiguous stacks
+ low thread creation overhead

GC interface is more complicated and expensive

- potential race conditions when switching stacks

- additional calling overhead/complexity

March 2020 WG2.8 — Zion 14



Runtime representations

Heap-allocated continuation closures
Return continuation closures are heap-allocated immutable objects.

Pros and cons:
+ simple implementation
+ simple GC interface
minimal space overhead

fast thread creation

+ + +

no race conditions when context switching
- loses locality between calls and returns
- increased allocation rate

- cannot take advantage of return-branch prediction

March 2020 WG2.8 — Zion 15



Evaluation

Sequential costs

M config I resize segment M linked M cps

Normalized time (short is better)

ack fib gs life mc-ray
Sequential Benchmarks

March 2020 WG2.8 — Zion 16



Concurrency costs

M config

3
B
g
a
e 2
]
€
S
<
A
o
o
£
=]
o
i
S
£
£
S
z

0

ec-ack

March 2020

Evaluation

I resize

segment

B linked

spawn

WG2.8 — Zion

ks

M cps

ping-pong



Conclusion

Future Work

March 2020

hybrid schemes may also provide some advantages
we are exploring a resizable + segmented stack scheme.

The idea is to start with small resizable stacks, which gives low space
overhead for applications with large numbers of threads.

The stack is resized until it hits the size of a segment at which point
the thread switches to the segmented model.

Unlike resizable stacks, segmented stacks reclaim memory after deep
recursions.

Resizable and segmented stacks use the same function prologue and
require similar stack meta data, so the extra implementation overhead
is low.

WG2.8 — Zion 18



Conclusion
Conclusion

» the overhead of linked frames appears to outweigh the locality
benefits of reusing the frame

» For sequential languages, resizable stacks are the best choice.

> segmented stacks are probably the best overall choice if sequential
performance is a high priority, but you still want concurrency.

P the cost of heap-allocated continuations is low enough for traditional
code that their ease of implementation may make them a good choice.
They are even a better choice if you are implementing a concurrent or
parallel language.

March 2020 WG2.8 — Zion 19



	Introduction
	Compiler support
	Runtime representations
	Evaluation
	Conclusion

