Shapes and Flattening

John Reppy
Joe Wingerter

University of Chicago

March 2020

Nested Data Parallelism

NESL

| 2

>

March 2020

NESL is a first-order functional language for parallel programming over
sequences designed by Guy Blelloch [Blelloch "96].

Provides parallel for-each operation (with optional filter)
{ x +y : xin xs; y in ys }
{ x /vy :xin xs; y in ys | (y /= 0) }
Provides other parallel operations on sequences, such as reductions,
prefix-scans, and permutations.

function dot (xs, ys) = sum ({ x » y : x in xs; y in ys })

Supports Nested Data Parallelism (NDP) — components of a parallel
computation may themselves be parallel.

WG 28 2

Nested Data Parallelism

NDP example: sparse matrix times dense vector

OO O =
SO NO WwWOo
o O O O A
S O i © O
S RO NO
O N S R S

Want to avoid computing
products where matrix entries
are 0.

March 2020

Sparse representation tracks
non-zero entries using sequence
of sequences of index-value

pairs:

©,1)

2,4

(1,3)

4.2)

3.5)

0,6)

1,7 | 4,8) |

IR

©,1)

WG 28

Nested Data Parallelism

NDP example: sparse-matrix times vector

In NESL, this algorithm has a compact expression:

function svxv (sv, v) = sum ({ x * v[i] : (i, x) in sv })

function smxv (sm, v) = { svxv (sv, Vv) : sv in sm }

Notice that the smxv is a map of map-reduce subcomputations; i.e., nested
data parallelism.

March 2020 WG 2.8 4

Nested Data Parallelism

NDP example: sparse-matrix times vector

Naive parallel decomposition will be unbalanced because of irregularity in
sub-problem sizes.

—>1 0,1) | 2,4 |2|2|1|3|1|
> (1,3 | 4,2

] B DiEn
—>| 3,5

] - - [- [
—>| (0.6) (1,7)|(4,8)|
—>| ©.1)

Flattening transformation converts NDP to
flat DP (including AoS to SoA)

March 2020 WG 28 5

Nested Data Parallelism

Flattening
Flattening (a.k.a. vectorization) is a global program transformation that
converts irregular nested data parallel code into regular flat data parallel code.
> Lifts scalar operations to work on sequences of values
» Flattens nested sequences paired with segment descriptors
» Conditionals are encoded as data

» Residual program contains vector operations plus sequential control flow
and recursion/iteration.

March 2020 WG 28 6

Nested Data Parallelism

Flattening example: factorial

function fact (n) = if (n <= 0) then 1 else n * fact (n-1);
function fact' (ns) = { fact (n) : n in ns };
e

function fact' (ns) =
let fs = (ns <=' dist (0, #ns));
(nsl, ns2) = PARTITION (ns, fs);
vsl = dist (1, #nsl);
vs2 = if (#ns2 = 0)

then []

else let
es = (ns2 i dist (1, #ns2));
rs = fact? (es);

in (ns2 ' rs);
in COMBINE (vsl, vs2, fs)

March 2020 WG 2.8 7

Nessie

Nessie

4
>
>

| 2

>

>

>

N
@ DD @l @ > > L)
/

March 2020

NESL to CUDA compiler built from scratch.

Front-end produces Mono, a monomorphic ANF-style IR.

Flattening eliminates NDP and produces Flan, which is a flat-vector
language.

Shape analysis is used to tag vectors with size information (symbolic in
some cases).

Back-end IR (\.,) is based on Second-Order Array Combinators
(SOACQ).

Back-end maps flattened code to kernels, performs aggressive fusion,
compile-time memory management, and CUDA code generation.
The focus of this work is on the flattening and shape analysis.

WG 28 8

Nessie

Simple map-reduce fusion

The A, code for the dotp example is

kernel prod (xs : [float], ys : [float]) -> [float] {
let res = MAP { i => xs[i] % ys[i] using xs, ys } (#xs)
return res

}

kernel sum (xs : [float]) —-> float {
let res = REDUCE { i => xs[i] using xs } (FADD) (#xs)
return res

}

function dotp (xs : [float], ys : [float]) -> [float] {
let t1 : [float] = run prod (xs, ys)
let t2 : float = run sum (tl)
return t2

}

March 2020 WG 2.8

Nessie

Simple map-reduce fusion

Step 1: Fuse the two kernels into a combined kernel.

kernel prod (xs : [float], ys : [float]) -> [float] {
let res = MAP { i => xs[i] % ys[i] using xs, ys } (#xs)
return res

}

kernel sum (xs : [float]) —-> float {
let res = REDUCE { i => xs[i] using xs } (FADD) (#xs)
return res

}

function dotp (xs : [float], ys : [float]) —-> [float] {
Fet tl : [float] = run prod (xs, ysj
let t2 : float = run sum (tl)
return t2

}

March 2020 WG 2.8

Nessie

Simple map-reduce fusion

Step 1: Fuse the two kernels into a combined kernel.

kernel F (xs : [float], ys : [float]) -> float {
let ts = MAP { i => xs[i] ys[i] using xs, ys } (#xs)
let res = REDUCE { i => ts[i] using ts } (FADD) (#ts)
return res

}
function dotp (xs : [float], ys : [float]) —-> [float] {

let t2 : float = run F (xs, ys)
return t2

March 2020 WG 2.8 9

Nessie

Simple map-reduce fusion

Step 2: Fuse the map operation into the rebuce’s pull operation

kernel F (xs : [float], ys : [float]) -> float {
let ts = MAP { i => xs[i] ys[i] using xs, ys } (#xs)
[let res = REDUCE { i => ts[i] using ts } (FADD) (#ts)]
return res

}

function dots (xs : [float], ys : [float]) -> [float] {
let t2 : float = run F (xs, ys)
return t2

}

March 2020 WG 2.8 9

Nessie

Simple map-reduce fusion

Step 2: Fuse the map operation into the rebuce’s pull operation

kernel F (xs : [float], ys : [float]) -> float {
let res = REDUCE { i => xs[i] * ys[i] using xs, ys } (FADD) (#xs)
return res

}

function dotp (xs : [float], ys : [float]) -> [float] {
let t2 : float = run F (xs, ys)
return t2

}

March 2020 WG 2.8 9

Fancier fusion

Consider the following NESL function:

function norm2 (xys) : ([float, float]) -> ([float], [float]) =
let xs = { x : (x, y) in xys };
ys = { vy : (x, y) in xys };
suml = sum(xs);
gts = {y :yinys | (y > 0) };
sum2 = sum(gts) ;
in

({ x / suml : x in xs }, { y / sum2 : y in ys })

March 2020 WG 28 10

Nessie

Fancier fusion (continued ...)
Translating to A, produces the following code:

kernel K1 (xs : [float]) -> float {
REDUCE { i => xs[i] using xs } (FADD) (#xs)
}
kernel K2 (ys : [float]) -> [float] {
FILTER { i => ys[i] using ys } { v => vy > 0 } (#ys)
}
kernel K3 (gts : [float]) -> float {
REDUCE { i => gts[i] using gts } (FADD) (#gts)
}
kernel K4 (xs : [float], s : float) =-> [float] {
MAP { i => xs[i] / s using xs } (#xs)
}
kernel K5 (ys : [float], s : float) -> [float] {
MAP { i => ys[i] / s using ys } (#ys)
}

function norm2 (xs : [float], ys : [float]) —-> ([float], [float])

let suml : float = run K1 (xs)
let gts : [float] = run K2 (ys)

let sum2 run K3 (gts)
let resl : [float] = run K4 (xs, suml)
let res2 : [float] = run K5 (ys, sum2)

return (resl, res2)

March 2020 WG 28

Nessie

Fancier fusion (continued ...)
PDG control region

kernel K1 (xs : [float]) -> float {
REDUCE { i => xs[i] using xs } (FADD) (#xs)
}
kernel K2 (ys : [float]) -> [float] {
FILTER { i => ys[i] using ys } { v => vy > 0 } (#ys)
}
kernel K3 (gts : [float]) -> float {
REDUCE { i => gts[i] using gts } (FADD) (#gts)
}
kernel K4 (xs : [float], s : float) =-> [float] {
MAP { i => xs[i] / s using xs } (#xs)
}
kernel K5 (ys : [float], s : float) -> [float] {
MAP { i => ys[i] / s using ys } (#ys)
}

run K3 (gts)

sum2

[rnn K4 (xs, suml;] [rnn K5 (ys, sum2']

function norm2 (xs : [float], ys : [float]) -> ([float], [float])
{

let suml : float = run K1 (xs) resl
let gts : [float] run K2 (ys)
let sum2 = run K3 (gts)

res2

let resl : [float] = run K4 (xs, suml)
let res2 : [float] = run K5 (ys, sum2)
return (resl, res2)

}

March 2020

WG 28 1"

Nessie

Fancier fusion (continued ...)
The bgst schedule if
|xs| = |ys|is unknown

kernel K1 (xs : [float]) -> float {
REDUCE { i => xs[i] using xs } (FADD) (#xs)
}

kernel K23 (gts : [float]) -> float { ° °

REDUCE { i => if ys[i] > 0 then ys[i] else 0 using gts } (FADD) (#gts)
}
kernel K4 (xs : [float], s : float) —> [float] {
MAP { i => xs[i] / s using xs } (#xs)
}
kernel K5 (ys : [float], s : float) —> [float] {
MAP { i => ys[i] / s using ys } (#ys)
}

run K3 (gts)

function norm2 (xs : [float], ys : [float]) -> ([float], [float]) ‘."su.“z

let suml : float = run K1 (xs) y

let sum2 : [£loat] = run K23 (ys)
let resl : [float] = run K4 (xs, suml)
let res2 : [float] = run K5 (ys, sum2) res2

return (resl, res2)

March 2020 WG 28 1"

Nessie

Fancier fusion (continued ...)

A Dbetter schedule, if we know
that |xs| = |ys]|

kernel K123 (xs : [float], ys : [float]) —-> (float, float) {
REDUCE { i => (xs[i], if ys[i] > 0 then ys[i] else 0)

(FADD, FADD) (#xs)
}
kernel K45 (xs, suml, ys, sum2) —-> [float] {

MAP { i => (xs[i] / suml, ys[1l] / sum2) using xs, ys } (#xs)

}

function norm2 (xs : [float], ys : [float]) —> ([float], [float])
{

let (suml, sum2) = run K123 (xs, ys)
let (resl, res2) = run K45 (xs, suml, ys, sum2) o
return (resl, res2)

sum2

}

[nm K4 (xs, suml;] [nm K5 (ys, sum2']

resl res2

March 2020 WG 28 1"

Shape analysis

» Shape analysis should identify when two sequences have the same size.
P It might also detect hyper-rectangular shapes (e.g., dense matrices).
» Examples like the norm2 function are hard to analyze post-flattening.

P The thesis of this work is that it is better to do the shape analysis before
flattening.

@D @ s @ = @D @@

March 2020 WG 28 12

Shape analysis

» Shape analysis should identify when two sequences have the same size.
P It might also detect hyper-rectangular shapes (e.g., dense matrices).

» Examples like the norm2 function are hard to analyze post-flattening.
>

The thesis of this work is that it is better to do the shape analysis before
flattening.

> We do shape analysis first on the Mono representation and record the
information using annotated types.

BEp@ e @R Ef =))OIy @

March 2020 WG 28 12

Annotated types

We define the following And we annotate types with
representation for shape information: ~ dimension information.
v = d fixed dimension T u= [T#wv] sequence type
| ¢ dimension function | Tixn pair type
. | 7 base types
d = n known size
| « dimension variable T ou= int(v) integer type
| #(a) applied function | other base types
| di +d> dimension addition
D) summation

We use dimension functions (¢) to represent the sizes of irregular nested
arrays.

And we annotate the integer type with a dimension to allow tracking of sizes
through length computations.

March 2020 WG 28 13

Annotated function types

For builtin operators and user functions we use annotated types with the
following general syntax:

va”@"(ﬁ?""ﬁ) _> 3571;'?

which captures the fact that the function can be polymorphic in the shape of
its arguments, but the the shape of its result might be unknown (e.g., because
of a filter).

March 2020 WG 28 14

Some builtin-function types

+int

*int

length

lengths

iota

concat

SUMflpat

filter

: Vo, B.(int(«), int(3)
. Va, B.(int(a), int(3)

) — int(a + B3)
)
Vo ([T # a]) — int(«)

— Jy.int(y)

Vo, ¢.([[T # ¢] # o) — [int(¢) # o
: Vo.(int(a)) — Jo.[int(¢) #]
++

Va, B[T# ol [T# B]) = [T # o+ f]

D Vo, ¢ ([F# ¢ # o)) = [F# Z¢(ﬁ)1

p=1

: Va.([float # a]) — float
Va.([T # a], [bool # o) — 35.[7 # f]

Examples

Consider the following NESL function that does element-wise multiplication
of two nested sequences:

function mm (xss:[[float]], yss:[[float]]) =
{ { x + vy : x in xs; y in ys }

: xs in xss, ys in yss };

What must be true about the shapes of xss, yss, and its result?

xss and yss are irregular, but they must have the same shape, which is also
the shape of the result.

mm : Vo, ¢.([[float # ¢] # «], [[float # ¢| # a]) — [[float # ¢] # a]

March 2020 WG 28 16

Examples
Another example that computes the product of a nested sequence and another

sequence:

function mv (xss: [[float]], ys: [float]) =
{ { x + vy : x in xs; y in ys }
: xXs in xss };

What must be true about the shapes of xss, yss, and its result?

Each row of xss must have the same length as ys and, thus we infer that xss
must have rectangular shape.

mv : Vo, B.([[float # (] # o, [float # 3]) — [[float # 5] # o]

March 2020 WG 28 16

Shape analysis

| 2

>

March 2020

We start with a pre-lifting pass that defines lifted versions of functions
that are used in parallel contexts.

Shape analysis works by introducing equality constraints between shape
and dimension expressions.

Shape constraints are handled symbolically; we do minimal arithmetic
reasoning.

Constraints of the form ¢ = d or ¢(a)) = d imply that ¢ is a constant
dimension function.

Because shape analysis is done before flattening, we do not lose
information about sequences of tuples.

WG 28 17

Shape-preserving flattening

» Once we have annotated the Mono representation, we apply the
flattening transformation.

P In the resulting program, size and segment descriptors are used to specify
the iteration space of the parallel SOACs.

> If two descriptors have the same type in the flattened program, then the
iteration spaces described by them must be the same and fusion may be
possible.

March 2020 WG 28 18

Status

» The shape analysis is implemented in the Nessie compiler.

> We are in the process of implementing the shape-preserving flattening
and Flan to A\, translation.

» The main challenge is dealing with the large library of data-parallel
operations provided by NESL.

March 2020 WG 28 19

Conclusion

Questions?

March 2020 WG 28 20

	Nested Data Parallelism
	Nessie
	Shapes
	Conclusion

