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Gottlob Frege, Begriffsschrift, 1879 

Propositional Logic 
Quantifiers 
2-dimentional notation      

      
    (lost out vs Peano’s linear notation) 

Propositional functions:  
    a proposition viewed as a function applied to arguments. 

Objects: 
    things that propositional functions can be applied to. 

Examples:  

    The sky is blue.    - a proposition, can be true or false 



Viewing it as a propositional function:  What is the argument? 

    sky has_color (blue)    -- blue is the argument 

        𝛷(A)  ==  sky has color A 

    (sky) has_color blue    -- sky is the argument 

        𝛷(A)  ==  A has color blue 

    (sky) has_color (blue)  -- both sky and blue are argument 
                               (2-arg prop function) 

Another example 

    x < 3, a propositional function of one argument, x 



Propositional functions are intentional: 

  The application of a propositional function produces 
  a proposition (statement) which can be true or false. 

Propositional functions may have several arguments 

     A has_color B 



Propositional functions as variables in propositions (almost). 

     𝛷(A,B) 

Here 𝛷 represents an indeterminate propositional function of two 
arguments, i.e. a variable ranging over propositional functions,  
hinting at propositional functions as arguments. 



Can propositional functions be "objects" that other propositional 
functions apply to?  e.g. 𝛹(𝛷) 

    No. Propositional functions take "objects" as arguments, and 
    propositional functions are not considered ”objects". 

Later, in Foundations of Arithmetic (1893), Frege allowed 
the “course of values” (i.e. extension, or graph) of a propositional 
function to be treated as an object, and this opened the door for 
Russell’s paradox: A propositional function might be applied to its 
own extension as an object. 

Notation for course of values:  ‘𝜺𝜱(𝜺) 

    ==>   ^x𝜱(x)  ==> ∧x𝜱(x)  ( =  {x | 𝜱(x)} )  (Russell) 
    =?=>  ∧x.e(x)   (Church) 
        



Foreshadowing of types in Frege’s treatment of propositional 
functions: 

    *  Multi-argument types apply to pairs, triples, etc, 
        suggesting product types 

    *  First-order pfs apply to “individuals”, 2nd order pfs apply to 
        first-order pfs, etc. 



Russell’s paradox, discovered June, 1901 
  
      S = { x | x ∉ x }            S  ∈  S    <=>    S  ∉  S 

        𝛹(𝛷)  iff not  𝛷(|𝛷|).   𝛹(|𝛹|)  <=>  not 𝛹(|𝛹|) 
          where |𝛹| is the extension of 𝛹 

* Correspondence between Russell and Frege, June 1992. 



Bertrand Russell, Principles of Mathematics,1903, Appendix B 

Here Russell first proposes types as a potential solution to the 
paradoxes. 

Preface:  

"In the case of classes, I must confess, I have failed to perceive any 
concept fulfilling the conditions requisite for the notion of class. And 
the contradiction discussed in Chapter x. proves that something is 
amiss, but what it is I have hitherto failed to discover." 



Appendix B:  toward a theory of types 

"Every propositional function 𝛷(x) — so it is contended — has, in 
addition to its range of truth, a range of significance, i.e. a range 
within which x must lie if 𝛷(x) is to be a proposition at all, whether 
true or false. This is the first point in the theory of types; the 
second point is that ranges of significance form types, i.e. if x 
belongs to the range of significance of 𝛷(x), then there is a class of 
objects, the type of x, all of which must also belong to the range of 
significance of 𝛷(x), however 𝛷 may be varied; and the range of 
significance is always either a single type or a sum of several whole 
types. The second point is less precise than the first, and the case 
of numbers introduces difficulties; but in what follows its importance 
and meaning will, I hope, become plainer." 



Thus a type is viewed as the range of significance of a propositional 
function (not the range of truth of a propositional function). 

Products: propositional functions over two or three arguments 
  =>  The range consists of pairs, triples, respectively. 



Russell developed types further in  

“Mathematical logic as based on the theory of types”, 1908. 

   Claims impredicativity is at the root of all the paradoxes 
   — a kind of self-referential definition. 
    
   Russell’s Vicious Circle Principle: 

       “Whatever involves all of a collection must not be one of 
        the collection.” 

   He avoids impredicativity by defining orders of propositions, 
   where a proposition is of order n+1 if it contains a universal 
   quantifier over variables ranging over things of order n 



This was called ramification (or ramified types) when used in 
conjunction with a simple type theory in Principia Mathematica 
(1910-1913).  

The simple type theory was not defined, but involved 

   *  products — types consisting of tuples 

   *  higher “kinds”:  1st order pfs, 2nd order pfs, etc. 

Types are not defined, nor is there a notation to express them. 
Only a of “being of the same type” is defined (incompletely).  



1920s: Ramsey and Hilbert and Ackermann 

   * The simple theory of types suffices to avoid the paradoxes. 

   * Ramsey (1926) gave an explicit definition of simple types 

        - 0 is a simple type  (ST) 
        - t1, …, tn are ST => (t1,…tn) is a ST 

     These describe the argument types of propositional functions. 

     E.g.  (0, (0,0))  
              =  the type of a pf that takes an individual 
                  and a pf with two individual arguments 
  



Meanwhile, in Set Theory: 

Zermelo 1908 + Fraenkel 1921  ==>   ZF axiomatization 

    Russell’s paradox is killed by 

     *  axiom of comprehension 

          {x ∈ A | 𝜱(x) },    not   {x | 𝜱(x) } 

     *  for extra measure, axiom of foundation 

          ∈ is well-founded  ==>  not  s ∈ s 

NBG (von Neumann, Bernays, Gödel) 
     axiomatic set theory with sets and classes



1934: Curry: Functionality in Combinatory Logic 
Curry's type theory for Combinatory Logic 

* primitive F combinator for constructing function types 

     Fabf   ≃   f : a → b 

     Semantics:   (∀x)(x ∈ a ⟹ f(x) ∈ b) 

  If x is a type, y a term, xy asserts that y has type x, (y ∈ x) 

     Axiom F: (∀x,y,z)(Fxyz ⟹ (∀u)(xu ⟹ y(zu)) 



Curry’s Functionality for CL 

* types used as predicates (propositional functions) that can apply to 
  "value" expressions. Distinction between variables representing types 
  and variables representing values is implicit. 

* types are things that can be asserted (proved) to apply to terms 

* combinators (hence terms) can have many types (polymorphism!) 
  Typing Axioms assign type schemes with universally quantified 
  type variables (polymorphic types!) to basic combinators: 

Axioms for typing primitive combinators, e.g. 

      [FK]  ∀(x, y) Fy(Fxy)K         K : ∀(x, y) y → (x → y) 

Note: this paper also defines a precursor of the Y combinator, used to 
show that Russell's paradox is avoided, because of the types. 



1940: Church: The Simple Theory of Types 

    simple theory of types combined with the lambda calculus 

    still treated as a logical language for reasoning 

    two primitive types, 𝞲 (individuals), 𝞸 (propositions, or Bool) 
    and function types,  e.g. 

         = : 𝞲 → 𝞲 → 𝞸  (a binary relation on individuals) 

         ¬ : 𝞸 → 𝞸 

         ∀ : (𝞲 → 𝞸) → 𝞸  (universal quantification) 



The End



1969: Curry:  Modified basic functionality in Combinatory Logic 

1. types for combinators are called functional characters 

2. type expressions are called F-obs: Fab = a → b 
    ranged over by metavariable 𝛘 

3. primitive types are called F-simples (e.g. N = Nat) 

4. "indeterminate F-simples" = parameters = type variables 

5. "F-schemes" are type expressions possibly containing type 
     variables (parameters) 

6. typing judgement of form ⊢ 𝝌 X, where 𝝌 is an F-ob and 
    X is a combinator term 

    𝝌 is a "functional character of X", i.e. a type (scheme) for X 
    "X is stratified" = "X is well-typed" = there exists 𝝌 s.t. |- 𝝌 X 



Rules: There is a single rule, namely  

RULE F: 
     ⊢ (F 𝝌 𝝐) X  &  ⊢ 𝝌 Y  ⟹  ⊢ 𝝐 (XY) 

This is the usual -> elimination rule for function application. 

Typing rules for primitive (constant) combinators I, K, and S 
given by the axioms: 

     [FI]  ⊢ F 𝜶 𝜶 I                i.e.  I : 𝜶 → 𝜶     

     [FK]  ⊢ F 𝜶 (F 𝜷 𝜶) K     i.e.  K : 𝜶 → (𝜷 → 𝜶) 

     [FS]  ⊢ F (F 𝜶 (F 𝜷 𝜸)) (F (F 𝜶 𝜷) (F 𝜶 𝜸)) S 

           i.e.  S : (𝜶 → (𝜷 → 𝜸)) → (𝜶 → 𝜷) → 𝜶 → 𝜸 


