

Programming Abstractions for Quantum Computing

Jennifer Paykin jpaykin@galois.com

Identify abstractions for solutions to quantum computing problems.

☑ New, different, unintuitive computing environment

☑ Abstractions could speed up development of useful algorithms and optimizations

☑ Influence state-of-the-art systems

Quantum Computing 101

Qubits

Qubits

Measurement

Measurement

Entanglement

Entanglement

Unitary Matrices

In linear algebra, a complex square matrix U is unitary if its conjugate transpose U^* is also its inverse, that is, if

$$
U^*U=UU^*=I,
$$

where I is the identity matrix.

 $g \mid$

Unitary Operations: $NOT = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Unitary Operations: NOT=X=(01) |0⟩ X |1⟩ 1 0

Hadamard = $\frac{1}{\sqrt{2}}(\begin{smallmatrix} 1 & 1 \\ 1 & -1 \end{smallmatrix})$

Physics

➔ No-cloning ➔ Reversible ➔ Superposition ➔ Measurement

Physics

➔ No-cloning ➔ Reversible

➔ Superposition ➔ Measurement

Computing Technology

➔ Circuit model ➔ Classical communication

Physics

➔ No-cloning ➔ Reversible ➔ Superposition ➔ Measurement

Computing Technology

➔ Circuit model ➔ Classical communication Algorithms

➔ Classical oracles ➔ Amplification

Physics

➔ No-cloning ➔ Reversible ➔ Superposition ➔ Measurement

Computing **Technology**

➔ Circuit model ➔ Classical **communication** Algorithms

➔ Classical oracles ➔ Amplification

PL Theory

➔ Data structures ➔ Control flow

Physics

➔ No-cloning ➔ Reversible ➔ Superposition

➔ Measurement communica

Computing **Technology**

➔ Circuit model ➔ Classical

Algorithms

➔ Classical oracles ➔ Amplification

PL Theory

Semantics

➔ Data structures ➔ Control flow ➔ Quantum CPOs ➔ String diagrams

Physics Abstraction No-Cloning

Yes duplication:

QPL: Substructural types

$$
\begin{array}{rcl}\n\text{QPL Terms} & P, Q & ::= & \textbf{new bit } b := 0 \mid \textbf{new qbit } q := 0 \mid \textbf{discount } x \\
& b := 0 \mid b := 1 \mid q_1, \dots, q_n \mid = S \\
& \textbf{skip} \mid P; Q \\
& \textbf{if } b \textbf{ then } P \textbf{ else } Q \mid \textbf{measure } q \textbf{ then } P \textbf{ else } Q \mid \textbf{while } b \textbf{ do } P \\
& \textbf{proc } X : \Gamma \to \Gamma' \{ P \} \textbf{ in } Q \mid y_1, \dots, y_m = X(x_1, \dots, x_n)\n\end{array}
$$

 $\Pi \vdash \langle \Gamma \rangle$ new qbit $q := \mathbf{0} \langle q : \mathbf{qbit}, \Gamma \rangle$

$$
\Pi \vdash \langle x:t, \Gamma \rangle \text{ discard } x \langle \Gamma \rangle
$$

Towards a Quantum Programming Language. Selinger, 2004

Quantum λ calculus

 $M, N, P \ ::= \ c \ | \ x \ | \ \lambda x.M \ | \ MN \ |$ $\langle M, N \rangle$ | * | let $\langle x, y \rangle = M$ in N | $\{inj_l(M) \mid \text{inj}_r(M) \mid \text{match } P \text{ with } (x \mapsto M \mid y \mapsto N) \mid$ let rec $f x = M$ in N.

$$
c ::= \text{ new} : () \rightarrow \text{qubit}
$$

$$
| \text{ meas} : \text{qubit} \rightarrow \text{bit}
$$

$$
| \text{ U} : \text{qubit}^{\otimes n} \rightarrow \text{qubit}^{\otimes n}
$$

Quantum Lambda Calculus. Selinger and Valiron, 2009

Quantum λ calculus

 $M, N, P \ ::= \ c \ | \ x \ | \ \lambda x.M \ | \ MN \ |$ $\langle M, N \rangle$ | * | let $\langle x, y \rangle = M$ in N | $\{inj_l(M) \mid \text{inj}_r(M) \mid \text{match } P \text{ with } (x \mapsto M \mid y \mapsto N) \mid$ let rec $f x = M$ in N.

The Bell experiment can be viewed as the composition

$$
\top \xrightarrow{\textbf{EPR}} qbit \otimes qbit \xrightarrow{f' \otimes f'} (trit \rightarrow bit) \otimes (trit \rightarrow bit),
$$

which produces a term of type $(trit \rightarrow bit) \otimes (trit \rightarrow bit)$, i.e., a pair $\langle f, g \rangle$ of entangled functions.

Quantum Lambda Calculus. Selinger and Valiron, 2009

Quipper: Circuit generation

mycirc :: Qubit \rightarrow Qubit \rightarrow Circ (Qubit, Qubit) mycirc a $b = do$ Н a <- hadamard a H b <- hadamard b (a,b) \leftarrow controlled_not a b return (a,b)

XEHaskell

Quipper: A Scalable Quantum Programming Language. Green, Lundsdane, Ross, Selinger, and Valiron, 2013

Dependent Types

or

Control Flow ?

PL Abstraction Dependent Types

Quantum Data Types

Quipper: A Scalable Quantum Programming Language. Green, Lundsdane, Ross, Selinger, and Valiron, 2013

Quantum Data Types

• Qubits, finite tuples of qubits

Quipper: A Scalable Quantum Programming Language. Green, Lundsdane, Ross, Selinger, and Valiron, 2013
Quantum Data Types

- Qubits, finite tuples of qubits
- Lists of qubits
	- Introduced in Quipper
	- Present in most mainstream languages

Quipper: A Scalable Quantum Programming Language. Green, Lundsdane, Ross, Selinger, and Valiron, 2013

Quantum Data Types

- Qubits, finite tuples of qubits
- Lists of qubits

 $|g|$

- Introduced in Quipper
- Present in most mainstream languages
- Polymorphic lists, trees, algebraic data types

Quipper: A Scalable Quantum Programming Language. Green, Lundsdane, Ross, Selinger, and Valiron, 2013

Inductive Box w1 w2 : Set := ...

Definition hadamard measure : Box Qubit Bit := box $q \Rightarrow$ meas ζ H ζ q.

QWIRE: A Core Language for Quantum Circuits. Paykin, Rand, Zdancewic, 2017

Fixpoint NTensor ($n : nat$) ($W : WType$) := match n with $\vert 0 \vert \rightarrow 0$ ne S n' => W & NTensor n' W end.

Infix " \otimes " := NTensor (at level 30) : circ_scope.

Fixpoint inParMany (n : nat) {W W'} (c : Box W W') : Box (n \otimes W) (n \otimes W') := match n with $\begin{vmatrix} 0 & =& \text{id_circ} \end{vmatrix}$ $| S_n' \implies \text{inPar } C \text{ (inParMany } n' c)$ end.

```
Fixpoint inParMany (n : nat) {W W'} (c : Box W W') : Box (n \otimes W) (n \otimes W') :=
  match n with
   \begin{vmatrix} 0 & -\end{vmatrix} id circ
   | S_n' \implies \text{inPar } C \text{ (inParMany } n' c)end.
```

```
Definition Deutsch_Jozsa (n : nat) (U : Box (S n \otimes Qubit) (S n \otimes Qubit))
                                    B Box One (n \otimes Bit) :=
   box () \Rightarrowlet \mathsf{qs} \leftarrow \mathsf{H} \nleftrightarrow \mathsf{sinit0} \nleftrightarrow (\mathsf{e});
      let_q \leftarrow H \; \text{S}\; \text{init1} \; \text{S} \; ();let_{-}(q, qs) \leftarrow U \ (q, qs);
      let_{-}( ) \leftarrow discard $ meas $q;
      meas \#n \xi H \#n \xi qs.
```
https://github.com/inQWIRE/QWIRE

Shape-Dependent Quantum Types

```
-- length :: List Unit -o Nat
-- x : Shape(List Qubit) |- Vec Qubit (length x) : Type
toVec :: ! (x :: List Qubit) -o Vec Qubit (length x)
toVec x = case \times ofNil -> VNil
         Cons y zs -> VCons y (g' zs)
```
QQTT? (Quantum Quantitative Type Theory)

```
within withAncilla : (Qubit -> List Qubit -> Qubit \otimes List Qubit) ->
                  List Qubit -> List Qubit
withAncilla f ls = let (q, ls') \leftarrow f (new 0) ls in
                         -- should be the case that q=|0\ranglelet \overline{\phantom{a}} \leftarrow discard q in
                        ls'
```
 $|g|$

QQTT? (Quantum Quantitative Type Theory)

```
data Is0 (q : Qubit): Type where
  Iso : Iso (init 0)withAncilla : ( q : Qubit) \otimes Is0 q \rightarrow List Qubit \rightarrow(q': Qubit) \otimes Is0 q' \otimes List Qubit) ->
                List Qubit -> List Qubit
withAncilla f ls = let (q', pf, ls') = f (init 0, ls0, ls) in
                      -- discard : (q : Qubit) -> Is0 q -> ()
                      let \rightarrow discard q' pf in
                      ls'
```
Equality??

Algebraic Effects, Linearity, and Quantum Programming Languages. Staton 2015. A HoTT Quantum Equational Theory. Paykin and Zdancewic, 2019.

Equality??

Algebraic Effects, Linearity, and Quantum Programming Languages. Staton 2015. A HoTT Quantum Equational Theory. Paykin and Zdancewic, 2019.

Equality??

X # init $b \approx \text{init}(\neg b)$ $(X-INTRO)$ let $!x := \text{meas}(X \# e)$ in $e' \approx$ let $!y := \text{meas } e$ in $e' \{\neg y/x\}$ $(X-ELIM)$

$$
\text{SWAP} \# (e_1, e_2) \approx (e_2, e_1) \tag{SWAP-INTRO}
$$

$$
let (x, y) := SWAP \# e in e' \approx let (y, x) := e in e'
$$
 (SWAP-ELIM)

DISTR# (init $b,e \geq 1$ if b then $l_2 e$ else $l_1 e$ (DISTR-INTRO) $case(DISTR#e)$ of $(l_1z_1 \rightarrow e_1 | l_2z_2 \rightarrow e_2) \approx$ let $(lb, y) \coloneqq e$ in $(intb, e)$ (DISTR-ELIM)

> Algebraic Effects, Linearity, and Quantum Programming Languages. Staton 2015. A HoTT Quantum Equational Theory. Paykin and Zdancewic, 2019.

- Higher Inductive Types (HITs) use paths to encode equivalence relations or groupoids
	- Groupoid: category where all morphisms are invertible

$$
\frac{f: G(\alpha, \beta)}{f: [\alpha] = [\beta]}
$$

- Higher Inductive Types (HITs) use paths to encode equivalence relations or groupoids
	- Groupoid: category where all morphisms are invertible
- Path induction holds of HITs
	- i.e. prove theorems with just base case refl
	- Simplify proofs about groupoi $f: G(\alpha, \beta)$

A HoTT Quantum Equational Theory. Paykin and Zdancewic, 2019.

 $[f]: [\alpha] = [\beta]$

- Higher Inductive Types (HITs) use paths to encode equivalence relations or groupoids
	- Groupoid: category where all morphisms are invertible
- Path induction holds of HITs
	- i.e. prove theorems with just base case refl
	- Simplify proofs about groupoids
- Unitaries form a groupoid

 $f: G(\alpha, \beta)$

 $[f]: [\alpha] = [\beta]$

• UMatrix (α, β) : unitary matrices of dimension $|\alpha| \times |\beta|$.

- α, β : FinType are finite types
- Because unitaries are square, $|\alpha| = |\beta|$.
- Quantum types: $QType = FinType/UMatrix$.
	- $Qubit = [Bool]_{UMatrix}$
- Unitaries are paths:

$$
\frac{\mathsf{U}: \mathsf{UMatrix}(\alpha, \beta)}{[\mathsf{U}]: [\alpha] = [\beta]}
$$

• $H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix}$, $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ • $[H]$: Qubit = Qubit, $[X]$: Qubit = Qubit • $[H] \neq [X] \neq 1_{\text{Qubit}}$

Theorem

Let U be a unitary transformation $U: \sigma = \tau$. $(\sigma, \tau : QType \equiv FinType/UMatrix)$

If $e: QExp \sigma$, there exists $U \# e: QExp \tau$. (apply the unitary U to e)

Theorem

Let U be a unitary transformation $U: \sigma = \tau$. $(\sigma, \tau : QType \equiv FinType/UMatrix)$

If e: $QExp \sigma$, there exists $U \# e$: $QExp \tau$. (apply the unitary U to e)

Proof.

By path induction. Base case for 1_{σ} : $\sigma = \sigma$:

$$
1_{\sigma}\mathrel{\#} e \equiv e
$$

Theorem

Let U be a unitary transformation $U: \sigma = \tau$. $(\sigma, \tau : QType \equiv FinType/UMatrix)$

If $e: QExp \sigma$, there exists $U \# e: QExp \tau$. (apply the unitary U to e)

Theorem

Let U be a unitary transformation $U: \sigma = \tau$. $(\sigma, \tau : QType \equiv FinType/UMatrix)$

If e: $QExp \sigma$, there exists $U \# e$: $QExp \tau$. (apply the unitary U to e)

Proof.

By path induction. Base case for 1_{σ} : $\sigma = \sigma$:

$$
1_{\sigma}\mathrel{\#} e \equiv e
$$

Theorem

Let U be a unitary transformation $U: \sigma = \tau$. $(\sigma, \tau : QType \equiv FinType/UMatrix)$

If e: $QExp \sigma$, there exists $U \# e$: $QExp \tau$. (apply the unitary U to e)

Note

 $[H] \# e \neq e$ because $[H] \neq 1_{Qubit}$

Theorem

Let $U: \sigma = \tau$ and $V: \tau = \rho$ be unitaries. Then

 $V# (U# e) = (V \circ U) \# e.$

Theorem

Let $U: \sigma = \tau$ and $V: \tau = \rho$ be unitaries. Then

$$
V \# (U \# e) = (V \circ U) \# e.
$$

Proof.

By path induction on V. If $V \equiv 1_{\tau}$ then

LHS =
$$
1_{\tau} \# (U \# e) = U \# e
$$

RHS = $(1_{\tau} \circ U) \# e = U \# e$

Theorem

$$
[\textit{SWAP}] \;\#\; (e_1,e_2) = (e_2,e_1)
$$

Structural equivalence $\sigma \iff \tau$:

$$
swap_{X,Y}: X \times Y \to Y \times X
$$

swap_{X,Y} $(x, y) = (y, x)$

Lift structural equivalence to unitary:

$$
\widehat{\text{swap}}_{\sigma,\tau} : \sigma \otimes \tau = \tau \otimes \sigma
$$

such that

$$
\widehat{\text{swap}}_{\sigma,\tau} = [\text{SWAP}_{\sigma,\tau}]
$$

Axiom

Let $f: \sigma \iff \tau$ be a structural equivalence. Then

$$
\widehat{f}\# \ \mathsf{init}_{\sigma}(b) \approx \mathsf{init}_{\tau}(f(b))
$$

Partial initialization:

$$
\widehat{\text{swap}_X, \text{Y}} \mathbin{\#} (e_1, e_2) \approx \text{swap}(e_1, e_2) = (e_2, e_1)
$$

Axiom

Let $f: \sigma \iff \tau$ be a structural equivalence. Then

$$
\widehat{f} \# \ init_{\sigma}(b) \approx init_{\tau}(f(b))
$$

Axiom

Let $f: \sigma \iff \tau$. Then:

$$
match \hat{f} \# \text{ } e \text{ with } g \approx match \text{ } e \text{ with } (g \circ f)
$$

- Quantum λ calculus = deep embedding in HoTT (univalence + groupoid quotients)
	- Would axioms be better in Cubical TT?

- Quantum λ calculus = deep embedding in HoTT (univalence + groupoid quotients)
	- Would axioms be better in Cubical TT?
- Quantitative HoTT?

- Quantum λ calculus = deep embedding in HoTT (univalence + groupoid quotients)
	- Would axioms be better in Cubical TT?
- Quantitative HoTT?
- Quantum λ calculus = shallow embedding in QHoTT?

Technology Abstraction Classical Communication

Knill, 1996

Knill, 1996

Knill, 1996

Knill, 1996

PL Abstraction Control Flow

Yes classical control

if meas($\sqrt{}$)=1 then ... else ...

Yes classical control

No* quantum control

Controlled-NOT

Controlled-U

Quantum unitary control

Quantum if, take 1

$$
qnot: \mathbf{Q_2} \rightarrow \mathbf{Q_2}
$$

\n
$$
qnot x = \mathbf{if}^{\circ} x
$$

\nthen qfalse
\nelse qtrue
\n
$$
cnot: \mathbf{Q_2} \rightarrow \mathbf{Q_2} \rightarrow \mathbf{Q_2} \otimes \mathbf{Q_2}
$$

\n
$$
cnot c x = \mathbf{if}^{\circ} c
$$

\nthen (qtrue, qnot x)
\n
$$
had \in \mathcal{Q_2} \rightarrow \mathcal{Q_2}
$$

$$
had x = \mathbf{if}^{\circ} x \mathbf{ then } \{ (-1) \text{ } \text{qtrue} \mid \text{qfalse} \}
$$

$$
\mathbf{else} \{ \text{qtrue} \mid \text{qfalse} \}
$$

QML: Quantum data and control. Altenkirch and Grattage, 2005

Quantum if, take q

$$
\Gamma \vdash^{a} c : \sigma \oplus \tau
$$
\n
$$
\Delta, x : \sigma \vdash^{\circ} t : \rho
$$
\n
$$
\Delta, y : \tau \vdash^{\circ} u : \rho \quad t \perp u
$$
\n
$$
\Gamma \otimes \Delta \vdash^{a} \text{ case}^{\circ} c \text{ of}
$$
\n
$$
\{\text{inl } x \Rightarrow t \mid \text{inr } y \Rightarrow u\} : \rho
$$

QML: Quantum data and control. Altenkirch and Grattage, 2005

Quantum if, take q

$$
\Gamma \vdash^{a} c : \sigma \oplus \tau
$$
\n
$$
\Delta, x : \sigma \vdash^{o} t : \rho
$$
\n
$$
\Delta, y : \tau \vdash^{o} u : \rho \quad t \perp u
$$
\n
$$
\Gamma \otimes \Delta \vdash^{a} \text{ case}^{\circ} c \text{ of}
$$
\n
$$
\{\text{inl } x \Rightarrow t \mid \text{inr } y \Rightarrow u\} : \rho
$$

$$
t \perp u \quad \lambda_0^* \kappa_0 = -\lambda_1^* \kappa_1
$$

$$
\{(\lambda_0)t \mid (\lambda_1)u\} \perp \{(\kappa_0)t \mid (\kappa_1)u\}
$$
 Osup

QML: Quantum data and control. Altenkirch and Grattage, 2005

Pattern-matching isomorphisms

$$
\text{not}: \mathbb{B} \leftrightarrow \mathbb{B} = \left(\begin{array}{c} \text{ff} \leftrightarrow \text{tt} \\ \text{tt} \leftrightarrow \text{ff} \end{array} \right),
$$

$$
\text{cont}: \mathbb{B} \otimes \mathbb{B} \leftrightarrow \mathbb{B} \otimes \mathbb{B} = \left(\begin{array}{c} \langle \text{ff}, x \rangle \leftrightarrow \langle \text{ff}, x \rangle \\ \langle \text{tt}, \text{ff} \rangle \leftrightarrow \langle \text{tt}, \text{tt} \rangle \\ \langle \text{tt}, \text{tt} \rangle \leftrightarrow \langle \text{tt}, \text{ff} \rangle \end{array} \right)
$$

 $Had: \mathbb{B} \leftrightarrow \mathbb{B}$ $\left(\begin{array}{r}\n\text{tt} & \leftrightarrow & \frac{1}{\sqrt{2}}\text{tt} + \frac{1}{\sqrt{2}}\text{ff} \\
\text{ff} & \leftrightarrow & \frac{1}{\sqrt{2}}\text{tt} - \frac{1}{\sqrt{2}}\text{ff}\n\end{array}\right)$

From Symmetric Pattern-Matching to Quantum Control. Sabry, Valiron, Vizzotto, 2018.

Quantum if, take 2

$\mathbf{qif} \;[\overline{q}]: \; |1\rangle \rightarrow P_1$ $|2\rangle \rightarrow P_2$ \Box $|n\rangle \rightarrow P_n$ \Box \mathbf{fi}

Alternation in Quantum Programming: From Superposition of Data to Superposition of Programs. Ying, Yu, and Feng, 2014.

Quantum if, take 2

$\mathbf{qif} \;[\overline{q}]: \; |1\rangle \rightarrow P_1$ $|2\rangle \rightarrow P_2$ \Box

$|n\rangle \rightarrow P_n$

Let $P_1, P_2, ..., P_n$ be a collection of (quantum) programs whose state spaces are the same Hilbert space \mathcal{H} . We introduce a new family of quantum variables \overline{q} that do not appear in $P_1, P_2, ..., P_n$.

> Alternation in Quantum Programming: From Superposition of Data to Superposition of Programs. Ying, Yu, and Feng, 2014.

 $\mathbf{fi} \mathbf{q}$

Alternation not compositional

 $\mathbf{qif} \;[\overline{q}]: \;|1\rangle \rightarrow P_1$ $|2\rangle \rightarrow P_2$ \Box

$|n\rangle \rightarrow P_n$ \Box fiq

$\llbracket P_1 \rrbracket = \llbracket P_1' \rrbracket \wedge \llbracket P_2 \rrbracket = \llbracket P_2' \rrbracket \not\Rightarrow \llbracket P_1 \rrbracket \bullet \llbracket P_2 \rrbracket = \llbracket P_1' \rrbracket \bullet \llbracket P_2' \rrbracket$

Quantum Alternation: Prospects and Problems. Badescu and Panangaden, 2015

Takeaways

Sources of Abstractions

Physics

➔ No-cloning ➔ Reversible ➔ Superposition

➔ Measurement

Computing **Technology**

➔ Circuit model ➔ Classical communica

Algorithms

➔ Classical oracles ➔ Amplification

PL Theory

Semantics

➔ Data structures ➔ Control flow ➔ Quantum CPOs ➔ String diagrams

How to motivate engineers?

How to proceed when the abstractions you have are unsatisfactory?