

Programming Abstractions for Quantum Computing

Jennifer Paykin jpaykin@galois.com

Identify abstractions for solutions to quantum computing problems.

☑ New, different, unintuitive computing environment

Abstractions could speed up development of useful algorithms and optimizations

✓ Influence state-of-the-art systems

Quantum Computing 101

Qubits

Qubits

Measurement

Measurement

Entanglement

Entanglement

Unitary Matrices

In linear algebra, a complex square matrix U is **unitary** if its conjugate transpose U^* is also its inverse, that is, if

$$U^*U = UU^* = I,$$

where I is the identity matrix.

Unitary Operations: NOT=X=(⁰¹₁₀)

Unitary Operations: NOT=X=($^{01}_{10}$)

Hadamard = $\frac{1}{\sqrt{2}} \left(\frac{1}{1} - 1 \right)$

© 2019 Galois, Inc.

Physics

→ No-cloning
→ Reversible
→ Superposition
→ Measurement

Physics

→ No-cloning
 → Reversible
 → Superposition

Superposition
 Measurement

Computing Technology

→ Circuit model
 → Classical
 communication

Physics

No-cloning
Reversible
Superposition
Measurement

Computing Technology

→ Circuit model
 → Classical
 communication

Algorithms

→ Classical oracles
→ Amplification

Physics

No-cloning
Reversible
Superposition
Measurement

Computing Technology

→ Circuit model
 → Classical
 → communication

Algorithms

→ Classical oracles
→ Amplification

PL Theory

→ Data structures
→ Control flow

Physics

→ No-cloning
→ Reversible
→ Superposition

→ Measurement >

Computing Technology

→ Circuit model
 → Classical
 → communication

Algorithms

Classical oracles
 Amplification

PL Theory

Semantics

Data structures
 Quantum CPOs
 Control flow
 String diagrams

Physics Abstraction No-Cloning

Yes duplication:

QPL: Substructural types

QPL Terms
$$P, Q$$
::=new bit $b := 0$ new qbit $q := 0$ discard x $b := 0$ $b := 1$ $q_1, \dots, q_n *= S$ skip $P; Q$ if b then P else Q measure q then P else Q while b do P proc $X : \Gamma \to \Gamma' \{ P \}$ in $Q \mid y_1, \dots, y_m = X(x_1, \dots, x_n)$

 $\Pi \vdash \langle \Gamma \rangle \text{ new qbit } q := \mathbf{0} \langle q : \mathbf{qbit}, \Gamma \rangle$

$$\Pi \vdash \langle x : t, \Gamma \rangle \text{ discard } x \langle \Gamma \rangle$$

Towards a Quantum Programming Language. Selinger, 2004

Quantum λ calculus

 $\begin{array}{lll} M,N,P & ::= & c \mid x \mid \lambda x.M \mid MN \mid \\ & & \langle M,N \rangle \mid * \mid let \; \langle x,y \rangle = M \; in \; N \mid \\ & & inj_l(M) \mid \; inj_r(M) \mid match \; P \; with \; (x \mapsto M \mid y \mapsto N) \mid \\ & & let \; rec \; f \; x = M \; in \; N. \end{array}$

$$c ::= \text{new} : () \multimap \text{qubit}$$
$$| \text{ meas} : \text{qubit} \multimap \text{bit}$$
$$| U : \text{qubit}^{\otimes n} \multimap \text{qubit}^{\otimes n}$$

Quantum Lambda Calculus. Selinger and Valiron, 2009

Quantum λ calculus

 $\begin{array}{lll} M,N,P & ::= & c \mid x \mid \lambda x.M \mid MN \mid \\ & & \langle M,N \rangle \mid * \mid let \; \langle x,y \rangle = M \; in \; N \mid \\ & & inj_l(M) \mid \; inj_r(M) \mid match \; P \; with \; (x \mapsto M \mid y \mapsto N) \mid \\ & & let \; rec \; f \; x = M \; in \; N. \end{array}$

The Bell experiment can be viewed as the composition

$$\top \xrightarrow{\mathbf{EPR}} qbit \otimes qbit \xrightarrow{f' \otimes f'} (trit \to bit) \otimes (trit \to bit),$$

which produces a term of type $(trit \rightarrow bit) \otimes (trit \rightarrow bit)$, i.e., a pair $\langle f, g \rangle$ of entangled functions.

Quantum Lambda Calculus. Selinger and Valiron, 2009

Quipper: Circuit generation

mycirc :: Qubit -> Qubit -> Circ (Qubit, Qubit) mycirc a b = doΗ a <- hadamard a b <- hadamard b Η (a,b) <- controlled_not a b return (a,b)

Haskell

Quipper: A Scalable Quantum Programming Language. Green, Lundsdane, Ross, Selinger, and Valiron, 2013

Dependent Types

Or

Control Flow ?

PL Abstraction Dependent Types

Quantum Data Types

Quipper: A Scalable Quantum Programming Language. Green, Lundsdane, Ross, Selinger, and Valiron, 2013

Quantum Data Types

• Qubits, finite tuples of qubits

Quipper: A Scalable Quantum Programming Language. Green, Lundsdane, Ross, Selinger, and Valiron, 2013
Quantum Data Types

- Qubits, finite tuples of qubits
- Lists of qubits
 - Introduced in Quipper
 - Present in most mainstream languages

Quipper: A Scalable Quantum Programming Language. Green, Lundsdane, Ross, Selinger, and Valiron, 2013

Quantum Data Types

- Qubits, finite tuples of qubits
- Lists of qubits
 - Introduced in Quipper
 - Present in most mainstream languages
- Polymorphic lists, trees, algebraic data types

Quipper: A Scalable Quantum Programming Language. Green, Lundsdane, Ross, Selinger, and Valiron, 2013

Inductive Box w1 w2 : Set := ...

Definition hadamard_measure : Box Qubit Bit :=
 box_ q ⇒ meas \$ _H \$ q.

QWIRE: A Core Language for Quantum Circuits. Paykin, Rand, Zdancewic, 2017

Fixpoint NTensor (n : nat) (W : WType) :=
 match n with
 | 0 => One
 | S n' => W ⊗ NTensor n' W
 end.
Infix "⊗" := NTensor (at level 30) : circ_scope.

Fixpoint inParMany (n : nat) {W W'} (c : Box W W') : Box (n ⊗ W) (n ⊗ W') :=
 match n with
 | 0 => id_circ
 | S n' => inPar c (inParMany n' c)
 end.

https://github.com/inQWIRE/QWIRE

Shape-Dependent Quantum Types

```
-- length :: List Unit -o Nat
--
-- x : Shape(List Qubit) |- Vec Qubit (length x) : Type
toVec :: ! (x :: List Qubit) -o Vec Qubit (length x)
toVec x = case x of
        Nil -> VNil
        Cons y zs -> VCons y (g' zs)
```

QQTT? (Quantum Quantitative Type Theory)

```
withAncilla : (Qubit -> List Qubit -> Qubit ⊗ List Qubit ->
List Qubit -> List Qubit
withAncilla f ls = let (q,ls') ← f (new 0) ls in
-- should be the case that q=|0)
let _ ← discard q in
ls'
```

QQTT? (Quantum Quantitative Type Theory)

```
data Is0 (q : Qubit) : Type where
Is0 : Is0 (init 0)
withAncilla : ( (q : Qubit) ⊗ Is0 q -> List Qubit ->
        (q': Qubit) ⊗ Is0 q' ⊗ ∎ist Qubit ) ->
        List Qubit -> List Qubit
withAncilla f ls = let (q',pf,ls') = f (init 0,Is0,ls) in
        -- discard : (q : Qubit) -> Is0 q -> ()
        let _ ← discard q' pf in
        ls'
```

Equality??

Algebraic Effects, Linearity, and Quantum Programming Languages. Staton 2015. A HoTT Quantum Equational Theory. Paykin and Zdancewic, 2019.

Equality??

(U-⊗-intro)		
(U-⊗-elim) (U-⊗-comm)	$U # (V # e) \approx (U \circ V) # e$ $I # e \approx e$	(U-COMPOSE) (U-I)
(U-⊕-intro ₁)	U^{\dagger} # U # $e \approx e$	(U-†)
(U-⊕-INTRO ₂)		
(U-⊕-ELIM)		
(U-⊕-сомм)		
(U-LOWER-COMM)		
(U-LOWER-ELIM)		
	$(U-\otimes-INTRO)$ $(U-\otimes-ELIM)$ $(U-\otimes-COMM)$ $(U-\oplus-INTRO_1)$ $(U-\oplus-INTRO_2)$ $(U-\oplus-ELIM)$ $(U-\oplus-COMM)$ (U-LOWER-COMM) (U-LOWER-ELIM)	(U- \otimes -INTRO) (U- \otimes -ELIM) (U- \otimes -COMM) $U \# (V \# e) \approx (U \circ V) \# e$ $I \# e \approx e$ (U- \oplus -INTRO ₁) (U- \oplus -INTRO ₂) (U- \oplus -ELIM) (U- \oplus -COMM) (U-LOWER-COMM) (U-LOWER-ELIM)

Algebraic Effects, Linearity, and Quantum Programming Languages. Staton 2015. A HoTT Quantum Equational Theory. Paykin and Zdancewic, 2019.

Equality??

$$\begin{array}{ll} X \ \# \ \mbox{init} \ b \approx \ \mbox{init} (\neg b) & (X\ \mbox{INTRO}) \\ \mbox{let} \ !x := \mbox{meas}(X \ \# \ e) \ \mbox{in} \ e' \approx \ \mbox{let} \ !y := \mbox{meas} \ e \ \mbox{in} \ e' \{\neg y/x\} & (X\ \mbox{ELIM}) \end{array}$$

SWAP #
$$(e_1, e_2) \approx (e_2, e_1)$$
 (SWAP-INTRO)

$$let (x, y) := SWAP \# e \text{ in } e' \approx let (y, x) := e \text{ in } e'$$
(SWAP-ELIM)

$$\texttt{DISTR} \# (\texttt{init} b, e) \approx \texttt{if} b \texttt{then} \iota_2 e \texttt{else} \iota_1 e \qquad (\texttt{DISTR-INTRO})$$
$$\texttt{case}(\texttt{DISTR} \# e) \texttt{of} (\iota_1 z_1 \to e_1 \mid \iota_2 z_2 \to e_2) \approx \texttt{let} (!b, y) \coloneqq e \texttt{in} (\texttt{init} b, e) \qquad (\texttt{DISTR-ELIM})$$

Algebraic Effects, Linearity, and Quantum Programming Languages. Staton 2015. A HoTT Quantum Equational Theory. Paykin and Zdancewic, 2019.

- Higher Inductive Types (HITs) use paths to encode equivalence relations or groupoids
 - Groupoid: category where all morphisms are invertible

$$f: G(\alpha, \beta)$$
$$[f]: [\alpha] = [\beta]$$

- Higher Inductive Types (HITs) use paths to encode equivalence relations or groupoids
 - Groupoid: category where all morphisms are invertible
- Path induction holds of HITs
 - i.e. prove theorems with just base case refl
 - Simplify proofs about groupoi $f: G(\alpha, \beta)$

A HoTT Quantum Equational Theory. Paykin and Zdancewic, 2019.

 $|f|: [\alpha] = [\beta]$

- Higher Inductive Types (HITs) use paths to encode equivalence relations or groupoids
 - Groupoid: category where all morphisms are invertible
- Path induction holds of HITs
 - i.e. prove theorems with just base case refl
 - Simplify proofs about groupoids
- Unitaries form a groupoid

A HoTT Quantum Equational Theory. Paykin and Zdancewic, 2019.

 $f: G(\alpha, \beta)$

 $[\mathbf{f}] : [\alpha] = [\beta]$

• UMatrix(α, β): unitary matrices of dimension $|\alpha| \times |\beta|$.

- α, β : FinType are finite types
- Because unitaries are square, $|\alpha| = |\beta|$.
- Quantum types: QType = FinType/UMatrix.
 - Qubit = [Bool]_{UMatrix}
- Unitaries are paths:

$$\frac{U: \mathsf{UMatrix}(\alpha, \beta)}{[U]: [\alpha] = [\beta]}$$

• $H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix}$, $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ • [H] : Qubit = Qubit, [X] : Qubit = Qubit• $[H] \neq [X] \neq 1_{\text{Qubit}}$

Theorem

Let U be a unitary transformation $U: \sigma = \tau$. $(\sigma, \tau : QType \equiv FinType/UMatrix)$

If $e: QExp \sigma$, there exists $U \# e: QExp \tau$. (apply the unitary U to e)

Theorem

Let U be a unitary transformation $U: \sigma = \tau$. $(\sigma, \tau : QType \equiv FinType/UMatrix)$

If $e: QExp \sigma$, there exists $U \# e: QExp \tau$. (apply the unitary U to e)

Proof.

By path induction. Base case for $1_{\sigma} : \sigma = \sigma$:

$$1_{\sigma} \# e \equiv e$$

Theorem

Let U be a unitary transformation $U: \sigma = \tau$. $(\sigma, \tau : QType \equiv FinType/UMatrix)$

If $e: QExp \sigma$, there exists $U \# e: QExp \tau$. (apply the unitary U to e)

Theorem

Let U be a unitary transformation $U: \sigma = \tau$. $(\sigma, \tau : QType \equiv FinType/UMatrix)$

If $e: QExp \sigma$, there exists $U \# e: QExp \tau$. (apply the unitary U to e)

Proof.

By path induction. Base case for $1_{\sigma} : \sigma = \sigma$:

$$1_{\sigma} \# e \equiv e$$

Theorem

Let U be a unitary transformation $U: \sigma = \tau$. $(\sigma, \tau : QType \equiv FinType/UMatrix)$

If $e: QExp \sigma$, there exists $U \# e: QExp \tau$. (apply the unitary U to e)

Note

 $[H] \# e \neq e \ because \ [H] \neq 1_{Qubit}$

Theorem

Let $U: \sigma = \tau$ and $V: \tau = \rho$ be unitaries. Then

$$V \# (U \# e) = (V \circ U) \# e.$$

Theorem

Let $U: \sigma = \tau$ and $V: \tau = \rho$ be unitaries. Then

$$V \# (U \# e) = (V \circ U) \# e.$$

Proof.

By path induction on V. If $V \equiv 1_{\tau}$ then

$$LHS = 1_{\tau} \# (U \# e) = U \# e$$
$$RHS = (1_{\tau} \circ U) \# e = U \# e$$

Theorem

$$[SWAP] \# (e_1, e_2) = (e_2, e_1)$$

Proof.	
????	

Structural equivalence $\sigma \iff \tau$:

$$swap_{X,Y}: X \times Y \to Y \times X$$

$$swap_{X,Y}(x,y) = (y,x)$$

Lift structural equivalence to unitary:

$$\widehat{\mathsf{swap}}_{\sigma,\tau}: \sigma \otimes \tau = \tau \otimes \sigma$$

such that

$$\widehat{\mathsf{swap}}_{\sigma,\tau} = [\mathsf{SWAP}_{\sigma,\tau}]$$

Axiom

Let $f: \sigma \iff \tau$ be a structural equivalence. Then

$$\widehat{f} \# \textit{init}_{\sigma}(b) \approx \textit{init}_{\tau}(f(b))$$

Partial initialization:

$$\widehat{\operatorname{swap}_{X,Y}} \# (e_1, e_2) \approx \operatorname{swap}(e_1, e_2) = (e_2, e_1)$$

Axiom

Let $f: \sigma \iff \tau$ be a structural equivalence. Then

$$\widehat{f} \# \textit{init}_{\sigma}(b) \approx \textit{init}_{\tau}(f(b))$$

Axiom

Let $f: \sigma \iff \tau$. Then:

match
$$\hat{f} \# e$$
 with $g \approx$ match e with $(g \circ f)$

- Quantum λ calculus = deep embedding in HoTT (univalence + groupoid quotients)
 - Would axioms be better in Cubical TT?

- Quantum λ calculus = deep embedding in HoTT (univalence + groupoid quotients)
 - Would axioms be better in Cubical TT?
- Quantitative HoTT?

- Quantum λ calculus = deep embedding in HoTT (univalence + groupoid quotients)
 - Would axioms be better in Cubical TT?
- Quantitative HoTT?
- Quantum λ calculus = shallow embedding in QHoTT?

Technology Abstraction Classical Communication

Knill, 1996

Knill, 1996

Knill, 1996

Knill, 1996

PL Abstraction Control Flow

Yes classical control

if meas()=1 then ... else ...

Yes classical control

No* quantum control

Controlled-NOT

Controlled-U

Quantum unitary control

Quantum if, take 1

$$qnot: \mathbf{Q_2} \multimap \mathbf{Q_2}$$

$$qnot x = \mathbf{if}^{\circ} x$$

$$\mathbf{then} \text{ qfalse}$$

$$\mathbf{else} \text{ qtrue}$$

$$cnot: \mathbf{Q_2} \multimap \mathbf{Q_2} \multimap \mathbf{Q_2} \otimes \mathbf{Q_2}$$

$$cnot \ c \ x = \mathbf{if}^{\circ} \ c$$

$$\mathbf{then} (\text{ qtrue}, qnot \ x)$$

$$\mathbf{else} (\text{ qfalse}, \ x)$$

$$had \in \mathcal{Q_2} \multimap \mathcal{Q_2}$$

had
$$x = \mathbf{if}^{\circ} x$$
 then $\{(-1) \text{ qtrue } | \text{ qfalse}\}$
else $\{\text{qtrue } | \text{ qfalse}\}$

QML: Quantum data and control. Altenkirch and Grattage, 2005

Quantum if, take q

$$\begin{array}{c} \Gamma \vdash^{a} c : \sigma \oplus \tau \\ \Delta, \ x : \sigma \vdash^{\circ} t : \rho \\ \Delta, \ y : \tau \vdash^{\circ} u : \rho \quad t \perp u \end{array} \\ \hline \Gamma \otimes \Delta \quad \vdash^{a} \quad \mathsf{case}^{\circ} \ c \ \mathsf{of} \\ \{ \mathtt{inl} \ x \Rightarrow t \mid \mathtt{inr} \ y \Rightarrow u \} : \rho \end{array} \oplus -\mathrm{elim}^{\circ} \end{array}$$

QML: Quantum data and control. Altenkirch and Grattage, 2005

Quantum if, take q

$$\begin{array}{c} \Gamma \vdash^{a} c : \sigma \oplus \tau \\ \Delta, \ x : \sigma \vdash^{\circ} t : \rho \\ \Delta, \ y : \tau \vdash^{\circ} u : \rho \quad t \perp u \end{array} \\ \hline \Gamma \otimes \Delta \quad \vdash^{a} \quad \mathsf{case}^{\circ} \ c \ \mathsf{of} \\ \{ \mathsf{inl} \ x \Rightarrow t \mid \mathsf{inr} \ y \Rightarrow u \} : \rho \end{array} \oplus -\mathsf{elim}^{\circ}$$

$$\frac{t \perp u \quad \lambda_0^* \kappa_0 = -\lambda_1^* \kappa_1}{\{(\lambda_0)t \mid (\lambda_1)u\} \perp \{(\kappa_0)t \mid (\kappa_1)u\}} \operatorname{Osup}$$

QML: Quantum data and control. Altenkirch and Grattage, 2005

Pattern-matching isomorphisms

$$\begin{array}{l} \texttt{not}: \mathbb{B} \leftrightarrow \mathbb{B} = \left(\begin{array}{cc}\texttt{ff} \ \leftrightarrow \ \texttt{tt} \\ \texttt{tt} \ \leftrightarrow \ \texttt{ff}\end{array}\right),\\\\\texttt{cnot}: \mathbb{B} \otimes \mathbb{B} \leftrightarrow \mathbb{B} \otimes \mathbb{B} = \left(\begin{array}{cc}\langle\texttt{ff}, x \rangle \ \leftrightarrow \ \langle\texttt{ff}, x \rangle \\ \langle\texttt{tt}, \texttt{ff} \rangle \ \leftrightarrow \ \langle\texttt{tt}, \texttt{tt} \rangle \\ \langle\texttt{tt}, \texttt{tt} \rangle \ \leftrightarrow \ \langle\texttt{tt}, \texttt{tt} \rangle\end{array}\right)\end{array}$$

 $\begin{array}{ccc} \operatorname{Had}: \mathbb{B} \leftrightarrow \mathbb{B} \\ \left(\begin{array}{ccc} \operatorname{tt} \ \leftrightarrow \ \frac{1}{\sqrt{2}} \operatorname{tt} + \frac{1}{\sqrt{2}} \operatorname{ff} \\ \operatorname{ff} \ \leftrightarrow \ \frac{1}{\sqrt{2}} \operatorname{tt} - \frac{1}{\sqrt{2}} \operatorname{ff} \end{array} \right) \end{array}$

From Symmetric Pattern-Matching to Quantum Control. Sabry, Valiron, Vizzotto, 2018.

Quantum if, take 2

qif $[\overline{q}] : |1\rangle \to P_1$ $\Box \qquad |2\rangle \to P_2$ \dots $\Box \qquad |n\rangle \to P_n$ fiq

Alternation in Quantum Programming: From Superposition of Data to Superposition of Programs. Ying, Yu, and Feng, 2014.

Quantum if, take 2

$\mathbf{qif} \ [\overline{q}] : \ |1\rangle \to P_1$ $\Box \qquad |2\rangle \to P_2$

 $|n\rangle \to P_n$

fiq

Let $P_1, P_2, ..., P_n$ be a collection of (quantum) programs whose state spaces are the same Hilbert space \mathcal{H} . We introduce a new family of quantum variables \overline{q} that do not appear in $P_1, P_2, ..., P_n$.

Alternation in Quantum Programming: From Superposition of Data to Superposition of Programs. Ying, Yu, and Feng, 2014.

Alternation not compositional

 $\mathbf{qif} \ [\overline{q}] : \ |1\rangle \to P_1$ $\Box \qquad |2\rangle \to P_2$

$\Box \qquad |n\rangle \to P_n$ fiq

$\llbracket P_1 \rrbracket = \llbracket P'_1 \rrbracket \land \llbracket P_2 \rrbracket = \llbracket P'_2 \rrbracket \not\Rightarrow \llbracket P_1 \rrbracket \bullet \llbracket P_2 \rrbracket = \llbracket P'_1 \rrbracket \bullet \llbracket P'_2 \rrbracket$

Quantum Alternation: Prospects and Problems. Badescu and Panangaden, 2015

Takeaways

Sources of Abstractions

Physics

→ No-cloning
→ Reversible
→ Superposition

→ Measurement

Computing Technology

→ Circuit model
 → Classical
 → communication

Algorithms

Classical oracles
 Amplification

PL Theory

Semantics

Data structures
 Quantum CPOs
 Control flow
 String diagrams

How to motivate engineers?

How to proceed when the abstractions you have are unsatisfactory?