NV: A Framework for
Modelling Network Protocols

Nick Giannarakis, Devon Loehr, Ryan Beckett, David Walker [pldi 2020]

Ryan Beckett, Aarti Gupta, Ratul Mahajan, David Walker [popl| 2020]

Networks connect us to our online services

Network errors have a large blast radius

Google cloud is down, affecting

numerous applications and

Microsoft Says Config. Change
Caused Azure Outage Gonat tierion”

- | With Confidence In AWS Shaken, Who Could Benefit?

Amazon.com, Inc. (NASDAQ: AMZN) faced a setback Tuesday due to an
M |Cr050ft M |Sconf|g outage at its cloud computing platform — Amazon Web Services, or AWS....

Network Device Caug benzinga.com S -

Outage Google details ‘catastrophic’ cloud outage
events: Promises to do better next time

Data-center automation software was behind what Google describes as a “catastrophic failure’ last Sunday.

A misconfigured network device caused Thursd & » " [[1 S _ . =T L. ;
ouf=—=-= £t WAlin A i Amvvvs oleaiiel cmnvnmi b in ey ol | | | e sor

vi Amazon’s massive AWS outage was caused by human error
Ca

£4 One incorrect command and the whole internet suffers.

By Jason Del Rey | @DelRey | Mar2,2017,2:20pm EST

The Problem

Configs are:

Low-level

Large

Ad hoc

Complicated
Non-compositional
Distributed

Produced by many vendors

SN

500

300
3071
802
303

2000
2001
2002
2003

3000
30071
3002
3003
3004
3005
3006
3007

interface EthernetO
ip address 172.16.0.0/31
configuring topology

ip route 192.168.1.0 255.255.255.0 192.168.2.0
static routes

bgp router 1
redistribute static
neighbor 172.16.0.1 remote-as 2
neighbor 172.16.0.1 route-map RMO out
Configuring BGP connections

router ospf 1
redistribute static metric 20 subnets
distance 70
network 192.168.42.0 0.0.0.255 area O
Configuring OSPF connections

ip community-list standard comml permit 1:2 1:3
ip prefix-list pfx permit 192.168.2.0/24
route-map RMO permit 10

match community comml

match ip address prefix-list pfx

set local-preference 200
route-map RMO permit 20

set metric 90

Configuring routing policies

= Arista ="

Cisco N I 7 Juniper
\ I 4
Y VvV ¥

The Solution NV

SMT BDDs

Example 1: Idealized BGP

1. if attached(8075:30)

2. set localpref 200 1. if peer = R3

3. permit 2. add tag(8075:30)

4. else (100, [R,],$8075:30}) 3. permit

5. permit

Rc 5
[[
(100, [R4, Rs, R,], {8075:30}) (100, [R,, R, |59) R

(200, [Rs, R4], {8075: 30}) (100,],9
(200, R3 l@] {8075:30})

(100, [Rz, k], ©) 0o (@001 68, [4), 0) /‘ '\\

custom path setoftags
preference

So, to model routing, we need:

* a network topology
* a type for routes
* an initial state

* route transfer and merge operations

(100, [],®

f\\

custom path setof tags
preference

So, to model routing, we need:

a network topology ... a graph

a type forroutes types for finite functional data
an initialstate initial value

route transfer and merge operations non-recursive functions

(100, [],®

f\\

custom path setof tags
preference

Modelling Routes (v 0.1)

type bgp = { 1lp

path
comm

type attribute

int; (2
int; (s
bool; } | %
option[bgp] (*

local preference *)
path length *)
community tag *)

route or not *)

(100, []

custom path
preference

ARN

set of tags

Modelling Topology

let nodes
let edges

Modelling Route Propagation

(* transfer route along an edge ¥*)
let trans (e:edge) (r:attribute)

attribute =

(* merge neighboring attributes with your initial attribute ¥*)

let merge (n:node) (rl:attribute) (rZ2:attribute) attribute =
1
4 3 & 0
1 1
- =) - =
: 8 &

Checking Properties

(* check reachability of route for prefix to all nodes n ¥*)
assert (n:node) (r:attribute) : bool =
let prefix = (100..., 24) 1n
match r[prefix] with
None -> false
| Some -> true

Example 2: Data Center Routing

50 ® Spine Routers (S)
AO A1 Aggregation Routers (A)
To Iy Iy 13 T, Tx
) G G G) G Topeotsack Routers
1 3 (3] (3 (3 3 & |3 |E3] EF] |(EE |E

e = ===

Example 2: Data Center Routing

25__1@.@/29 B (1@@; [TQA@iS@D

25.0.0.0/29 = (100, [Ty, Ag, Sol)
25.2.0.0/29 ~ (100, [T,, Aq, So])

50

25.1.0.0/29 = (100, [T;, A1)
25.2.0.0/29 ~ (100, [Ty, 4o])

{25..0..0..0/29 » (100, [T, A@])}}

Complexity: n%\/n

Caonmy) psioos- (R0

Example 2: Data Center Routing

So {25.{0,1,2}.0.0/29 ~ 2}

Complexity: nyn

{25.0.0.0/29 - 0} {25.2.0.0/29 ~ 0}
{25.1.0.0/29 ~ 0}

Analysis Time (Sec)

100
80
60
40
20

Empirical Results

|

- Abstract
- = Concrete

—”
-

L
___‘——_—

0 100 200 300 400 500
Data Center Size

Simulation time vs. data center size
for verifying all-pairs connectivity

Two Key ldeas

(1) Choose the right abstractions

25.0.0.0/29 + (100, [Ty, Ag, So]) 25.0.0.0/29 ~ 3
25.1.0.0/29 + (100, [Ty, Ao, So]) > {25.1.0.0/29 - 3}
25.2.0.0/29 » (100, [T, A, So]) 25.2.0.0/29 » 3
\ Y J -
leaves can’t be shared/ leaves can be shared

represented compactly

(2) Represent maps compactly

* We use multi-terminal BDDs (mtBDDs)
* Map operations are designed to keep mtBDDs skinny

Modelling Routes (v 2.0)

type bgp = { path

type prefix =

type attribute

int; }

int * intb

dict[prefix,

(* path length

(* (dest 1P,

option[bgp]]

length)

<)

)

T

4

~—

0 (2

(v =)

[

(¢ =)
[
(¢ =)

Maps as Multi-terminal BDDs

internal nodes are bits of the key

false (0) /'! true (1)
U4
|

terminal nodes are values

Maps as Multi-terminal BDDs

........... bit 1
bits of thekey- BB | e bit 2
D B S bit 3

values :

represents: -

Maps as Multi-terminal BDDs

MtBDDs are good representations when skinny .

/
4

* map over values keeps them skinny ,‘}

* map over keys + values can blow up

’

* mapife p f1 f2: splits at most by a factor of two /' o \
(0]

Tends to work well in networks, which have a lot of symmetry

applied to
leaves of
the BDD

Modelling Route Propagation

type attribute = dict[prefix, optionl[bgp]]

(* propagation of single BGP route *)
let trans bgp (bgp:bgp) =
match bgp with
None -> None
| Some {lp=lp; len=1; comm=c} ->
some {lp=lp; len=1+1; comm=c}

(* propagation of all BGP routes ¥*)
let trans bgp all (r:attribute) =
map trans bgp r

Modelling Route Propagation

(* define predicate p over keys ¥*)
let p (ip, length) = set.member bogons 1ip

(* define transformer f£ over values ¥*)
let £ v = None

(* custom filtering of routes ¥*)

let permit (r:attribute) = mapif p f r
routes: predicate: result:
/, V 4 y

R
|,' BDD apply ‘ - ‘

Mo o //X o

| Some 1 | [Some 7] [Falsej [True m

The Bottom Line

POPL 2020 (Hand-crafted analyses):

100

'g — Abstract //‘
2 801 | . - Concrete //
£ 60 R
= -’
wn ”
> _-
< e -

0 T . .

0 100 200 300 400 500

Data Center Size

PLDI 2020: Design of NV. Programming new models.
New fault tolerance analyses.

More Generally

S ’

SO W
l Some 1 I {Some7] filter f dict

Examine
test
results

Treat collections as Filter data/
BDDs Apply tests

More Generally

Can we design a sublanguage for manipulating BDDs?
Convert collections to BDDs?

Convert user functions to BDD-processing ones?
Deploy in QuickCheck/SmallCheck?

Kinda like a BDD-based version of Rosette?
What other application areas will benefit?

Summary and Conclusions

Network correctness is more important than ever

NV is a new functional language for modelling protocols and defining

custom abstractions

It’s got an efficient BDD-based simulator (and an SMT solver) back end.

