

NV: A Framework for Modelling Network Protocols

Nick Giannarakis, Devon Loehr, Ryan Beckett, David Walker [pldi 2020]

Ryan Beckett, Aarti Gupta, Ratul Mahajan, David Walker [popl 2020]

Networks connect us to our online services

Network errors have a large blast radius

Google cloud is down, affecting numerous applications and Microsoft Says Config. Change **Chad Fullerton Caused Azure Outage** @chad fullerton With Confidence In AWS Shaken, Who Could Benefit? Microsoft: Misconfig Amazon.com, Inc. (NASDAQ: AMZN) faced a setback Tuesday due to an outage at its cloud computing platform — Amazon Web Services, or AWS... **Network Device Caus** benzinga.com Google details 'catastrophic' cloud outage Outage events: Promises to do better next time A misconfigured network device caused Thursd Amazon's massive AWS outage was caused by human error One incorrect command and the whole internet suffers. By Jason Del Rey | @DelRey | Mar 2, 2017, 2:20pm EST

The Problem

```
interface Ethernet0
                                                  ip address 172.16.0.0/31
                                                  ... configuring topology
                                         500
                                                ip route 192.168.1.0 255.255.255.0 192.168.2.0
Configs are:
                                                ... static routes
                                         800
                                                bgp router 1
                                         801
                                                  redistribute static
                                         802
                                                  neighbor 172.16.0.1 remote-as 2
Low-level
                                         803
                                                 neighbor 172.16.0.1 route-map RMO out
                                                  ... Configuring BGP connections
Large
                                        2000
                                                router ospf 1
                                        2001
                                                  redistribute static metric 20 subnets
                                        2002
                                                  distance 70
Ad hoc
                                        2003
                                                 network 192.168.42.0 0.0.0.255 area 0
                                                  ... Configuring OSPF connections
Complicated
                                        3000
                                                ip community-list standard comm1 permit 1:2 1:3
                                        3001
                                                ip prefix-list pfx permit 192.168.2.0/24
Non-compositional
                                        3002
                                               route-map RMO permit 10
                                        3003
                                                  match community comm1
Distributed
                                        3004
                                                  match ip address prefix-list pfx
                                        3005
                                                  set local-preference 200
                                        3006
                                               route-map RMO permit 20
Produced by many vendors
                                        3007
                                                  set metric 90
                                                  ... Configuring routing policies
```


Example 1: Idealized BGP

So, to model routing, we need:

- a network topology
- a type for routes
- an initial state
- route transfer and merge operations

So, to model routing, we need:

- a network topology
- a type for routes
- an initial state
- route transfer and merge operations

..... a graph

..... types for finite functional data

..... initial value

..... non-recursive functions

Modelling Routes (v 0.1)

Modelling Topology

```
let nodes = 5
let edges = {0=1; 0=2; 1=3; 2=3; 3=4}
```


Modelling Route Propagation

```
(* transfer route along an edge *)
let trans (e:edge) (r:attribute) : attribute = ...

(* merge neighboring attributes with your initial attribute *)
let merge (n:node) (r1:attribute) (r2:attribute) : attribute =
...
```


Checking Properties

```
(* check reachability of route for prefix to all nodes n *)
assert (n:node) (r:attribute) : bool =
  let prefix = (100..., 24) in
  match r[prefix] with
    None -> false
    | Some _ -> true
```

Example 2: Data Center Routing

Example 2: Data Center Routing

Example 2: Data Center Routing

Complexity: $n\sqrt{n}$

Empirical Results

Simulation time vs. data center size for verifying all-pairs connectivity

Two Key Ideas

(1) Choose the right abstractions

$$\begin{cases}
25.0.0.0/29 \mapsto (100, [T_0, A_0, S_0]) \\
25.1.0.0/29 \mapsto (100, [T_1, A_0, S_0]) \\
25.2.0.0/29 \mapsto (100, [T_2, A_0, S_0])
\end{cases}$$

$$\begin{cases}
25.0.0.0/29 \mapsto 3 \\
25.1.0.0/29 \mapsto 3 \\
25.2.0.0/29 \mapsto 3
\end{cases}$$

leaves can't be shared/ represented compactly leaves can be shared

- (2) Represent maps compactly
 - We use multi-terminal BDDs (mtBDDs)
 - Map operations are designed to keep mtBDDs skinny

Modelling Routes (v 2.0)

```
type bgp = { path : int; } (* path length *)

type prefix = int * int5 (* (dest IP, length) *)

type attribute = dict[prefix, option[bgp]]
```


Maps as Multi-terminal BDDs

internal nodes are bits of the key

terminal nodes are values

Maps as Multi-terminal BDDs

represents:
$$\begin{array}{c|c}
000 \mapsto 0 \\
001 \mapsto 1 \\
010 \mapsto 1 \\
011 \mapsto 7 \\
100 \mapsto 1 \\
\dots
\end{array}$$

Maps as Multi-terminal BDDs

MtBDDs are good representations when skinny

- map over values keeps them skinny
- map over keys + values can blow up
- mapife p f1 f2: splits at most by a factor of two

Tends to work well in networks, which have a lot of symmetry

Modelling Route Propagation

```
type attribute = dict[prefix, option[bgp]]
            (* propagation of single BGP route *)
           let trans bgp (bgp:bgp) =
applied to
             match bgp with
leaves of
                None -> None
the BDD
               | Some {lp=lp; len=l; comm=c} ->
                   Some {lp=lp; len=l+1; comm=c}
            (* propagation of all BGP routes *)
           let trans bgp all (r:attribute) =
             map trans bgp r
```

Modelling Route Propagation

```
(* define predicate p over keys *)
let p (ip, length) = set.member bogons ip

(* define transformer f over values *)
let f v = None

(* custom filtering of routes *)
let permit (r:attribute) = mapif p f r
```


The Bottom Line

POPL 2020 (Hand-crafted analyses):

PLDI 2020: Design of NV. Programming new models. New fault tolerance analyses.

More Generally

filter f dict

Treat collections as BDDs

Filter data/ Apply tests Examine test results

More Generally

Can we design a sublanguage for manipulating BDDs?

Convert collections to BDDs?

Convert user functions to BDD-processing ones?

Deploy in QuickCheck/SmallCheck?

Kinda like a BDD-based version of Rosette?

What other application areas will benefit?

Summary and Conclusions

Network correctness is more important than ever

NV is a new functional language for modelling protocols and defining custom abstractions

It's got an efficient BDD-based simulator (and an SMT solver) back end.