
How to Specify it!

A guide to writing properties of pure functions.

John Hughes

Imagine testing reverse...

test_Reverse =
reverse [1,2,3] === [3,2,1]

Function
under test

Sample
argument

Expected
result

Comparison operator
displaying a message
if not equal

Imagine testing reverse...
with QuickCheck

prop_Reverse :: [Int] -> Property
prop_Reverse xs =

reverse xs === ???

Tell QuickCheck to
generate random
lists of integers

A random
argument

But what do we
put here?

Imagine testing reverse...
with QuickCheck

prop_Reverse :: [Int] -> Property
prop_Reverse xs =

reverse xs === predictReverse xs

This is not easier
to write than
reverse!

We’re likely to
make the same
mistakes

Replicating the code in the tests...

$$$

Expensive!
₵

Low value!

What can we do instead?

prop_Reverse :: [Int] -> Property
prop_Reverse xs =

reverse (reverse xs) === xs

Check a property
of the return
value instead

*Reverse> quickCheck prop_Reverse
+++ OK, passed 100 tests.

*Reverse> quickCheck test_Reverse
*** Failed! Falsified (after 1 test):
[1,2,3] /= [3,2,1]

100 random lists!

reverse xs = xs

Passes even if we
defined...

prop_Wrong :: [Int] -> Property
prop_Wrong xs = reverse xs === xs

*Reverse> quickCheck prop_Wrong
*** Failed! Falsified (after 3 tests and 3 shrinks):
[0,1]
[1,0] /= [0,1] Counterexample:

Almost always [0,1],
sometimes [1,0]

Shrinking
• Discards unnecessary list elements (we need at least two)
• Replaces integers by smaller integers (we need distinct

integers, {0,1} are the two smallest)

Property Based Testing

• Random generation of lots of test
cases

• Shrinking results in minimal
counterexamples—easy to debug

• Replicating code in the tests is
tempting, but expensive, and
low value

Systematic
ways of

formulating
properties

Example
data BST k v = Leaf

| Branch (BST k v) k v (BST k v)
deriving (Eq, Show, Generic)

-- the operations under test
find :: Ord k => k -> BST k v -> Maybe v

nil :: BST k v
insert :: Ord k => k -> v -> BST k v -> BST k v
delete :: Ord k => k -> BST k v -> BST k v
union :: Ord k => BST k v -> BST k v -> BST k v

-- auxiliary operations
toList :: BST k v -> [(k, v)]
keys :: BST k v -> [k]

Generator and shrinker
instance (Ord k, Arbitrary k, Arbitrary v) =>

Arbitrary (BST k v) where

-- generator
arbitrary =
do kvs <- arbitrary

return $
foldr (uncurry insert) nil (kvs :: [(k,v)])

-- shrinker
shrink = genericShrink

Generate by
inserting random
key-value pairs

Shrink using a
generic QuickCheck
mechanism

Is there an invariant?1
valid :: Ord k => BST k v -> Bool

valid Leaf = True

valid (Branch l k v r) =
valid l && valid r &&
all (<k) (keys l) && all (>k) (keys r)

Invariant properties

prop_NilValid = valid (nil :: Tree)

prop_InsertValid :: Key -> Val -> Tree -> Bool
prop_InsertValid k v t = valid (insert k v t)

prop_DeleteValid :: Key -> Tree -> Bool
prop_DeleteValid k t = valid (delete k t)

prop_UnionValid :: Tree -> Tree -> Bool
prop_UnionValid t t' = valid (union t t')

type Key = Int
type Val = Int
type Tree = BST Key Val

=== prop_InsertValid from BSTSpec.hs:19 ===
*** Failed! Falsified (after 6 tests and 8 shrinks):
0
0
Branch Leaf 0 0 Leaf

=== prop_DeleteValid from BSTSpec.hs:22 ===
*** Failed! Falsified (after 8 tests and 7 shrinks):
0
Branch Leaf 1 0 (Branch Leaf 0 0 Leaf)

=== prop_UnionValid from BSTSpec.hs:25 ===
*** Failed! Falsified (after 7 tests and 9 shrinks):
Branch Leaf 0 0 (Branch Leaf 0 0 Leaf)
Leaf

insert

=== prop_InsertValid from BSTSpec.hs:19 ===
*** Failed! Falsified (after 6 tests and 8 shrinks):
0
0
Branch Leaf 0 0 Leaf

=== prop_DeleteValid from BSTSpec.hs:22 ===
*** Failed! Falsified (after 8 tests and 7 shrinks):
0
Branch Leaf 1 0 (Branch Leaf 0 0 Leaf)

=== prop_UnionValid from BSTSpec.hs:25 ===
*** Failed! Falsified (after 7 tests and 9 shrinks):
Branch Leaf 0 0 (Branch Leaf 0 0 Leaf)
Leaf

insert

Testing our tests

prop_ArbitraryValid t = valid t

prop_ShrinkValid t =
all valid (shrink t)

Branch Leaf 0 0 (Branch Leaf 0 1 Leaf)
 Branch Leaf 0 0 (Branch Leaf 0 0 Leaf)

prop_InsertPost k v t k' =
find k' (insert k v t)
===
if k==k' then Just v else find k' t

What is the postcondition?2 ”After calling insert, we should be
able to find the key inserted, and any
other keys present beforehand”

Rarely true?

What is the postcondition of
find?

”After calling find,
—if the key is present in the tree, the result is Just value
—if the key is not present, the result is Nothing”

How can we
tell this?

By construction!

prop_FindPostPresent k v t =
find k (insert k v t) === Just v

prop_FindPostAbsent k t =
find k (delete k t) === Nothing

Don’t test for
presence—ensure by
construction

Can every tree containing
k be expressed in this
form?

Metamorphic properties3 ”How does changing the input of
insert change its result?”

t

???

insert k v

insert k’ v’
???

insert k v

???
insert k’ v’

O(n2)
ideas

prop_InsertInsert (k,v) (k',v') t =
insert k v (insert k' v' t)
===
insert k' v' (insert k v t)

Original call

Modified call

Relationship

=== prop_InsertInsert from BSTSpec.hs:78 ===
*** Failed! Falsified (after 2 tests and 5 shrinks):

(0,0)
(0,1)
Leaf
Branch Leaf 0 0 Leaf /= Branch Leaf 0 1 Leaf

prop_InsertInsert (k,v) (k',v') t =
insert k v (insert k' v' t)
===
insert k' v' (insert k v t)

Is this really true?
TEST
IT!!!

Last insertion wins

prop_InsertInsert (k,v) (k',v') t =
insert k v (insert k' v' t)
===
if k==k' then insert k v t else
insert k' v' (insert k v t)

=== prop_InsertInsert from BSTSpec.hs:78 ===
*** Failed! Falsified (after 2 tests):
(1,0)
(0,0)
Leaf

Branch Leaf 0 0 (Branch Leaf 1 0 Leaf) /=

Branch (Branch Leaf 0 0 Leaf) 1 0 Leaf

Equivalence for trees

t1 =~= t2 =
toList t1 === toList t2

prop_InsertInsert (k,v) (k',v') t =
insert k v (insert k' v' t)
=~=
if k==k' then insert k v t else
insert k' v' (insert k v t)

Model-based properties4
t

???

insert k v List.insert (k,v)

toList

toList

abstraction
function

abstract
operation

prop_InsertModel (k,v) t =
toList (insert k v t)
===
L.insert (k,v) (toList t)

*BSTSpec> quickCheck prop_InsertModel
*** Failed! Falsified (after 13 tests and 7 shrinks):
(1,0)
Branch Leaf 1 0 Leaf
[(1,0)] /= [(1,0),(1,0)]

duplicated key

prop_InsertModel (k,v) t =
toList (insert k v t)
===
L.insert (k,v) (deleteKey k $ toList t)

Type of property Number of
properties

Invariant 4
Postcondition 5
Metamorphic 16
Model-based 5

deleteinsert union

Type of property Number of
properties

Bugs
missed

Invariant 4 5
Postcondition 5 0
Metamorphic 16 0
Model-based 5 0

Effectiveness

prop_FindPostPresent k v t =
find k (insert k v t) === Just v

May find
bug in
find or
insert

Will not find bugs
in delete or
union

Effectiveness

prop_FindPostPresent k v t =
find k (insert k v t) === Just v

deleteinsert union

2/3

Type of
property

Number of
properties

Bugs
missed

Effectiveness

Invariant 4 5 38%
Postcondition 5 0 79%
Metamorphic 16 0 90%
Model-based 5 0 100%

=== prop_UnionPost from BSTSpec.hs:75 ===
Mean time to failure: 50.04595404595405

=== prop_InsertUnion from BSTSpec.hs:117 ===
Mean time to failure: 12.625374625374626

=== prop_DeleteUnion from BSTSpec.hs:145 ===
Mean time to failure: 45.696303696303694

=== prop_UnionDeleteInsert from BSTSpec.hs:167 ===
Mean time to failure: 79.32767232767233

=== prop_UnionUnionAssoc from BSTSpec.hs:185 ===
Mean time to failure: 8.895104895104895

=== prop_FindUnion from BSTSpec.hs:206 ===
Mean time to failure: 50.27172827172827

=== prop_UnionModel from BSTSpec.hs:290 ===
Mean time to failure: 8.368631368631368

Lo
gi

ca
lly

eq
ui

va
le

nt
!

prop_UnionPost t t' k =
find k (union t t')
===
(find k t <|> find k t')

prop_UnionModel t t' =
toList (union t t’)
===
List.sort
(List.unionBy

((==) `on` fst)
(toList t)
(toList t'))

Mean time to failure

Property type Min Max Mean

Postcondition 9.7 160 68

Metamorphic 1 401 61.6

Model-based 5 6.5 5.8

Averaged over seven bugs, and all properties of each type that detect
the bugs

Model-based
• Easier to think of than

postconditions
• Require fewer properties

than metamorphic
approach

• Are the most effective
properties

• Find bugs fastest
• Complete specification

Metamorphic
• Do not require a model
• Easiest to write
• Good effectiveness

	How to Specify it!��A guide to writing properties of pure functions.
	Imagine testing reverse...
	Imagine testing reverse... �with QuickCheck
	Imagine testing reverse... �with QuickCheck
	Replicating the code in the tests...
	What can we do instead?
	Bildnummer 7
	Bildnummer 8
	Property Based Testing
	Bildnummer 10
	Example
	Generator and shrinker
	Is there an invariant?
	Invariant properties
	insert
	insert
	Testing our tests
	What is the postcondition?
	What is the postcondition of find?
	By construction!
	Metamorphic properties
	Bildnummer 26
	Bildnummer 27
	Bildnummer 28
	Equivalence for trees
	Bildnummer 30
	Model-based properties
	Bildnummer 34
	Bildnummer 35
	Bildnummer 36
	Bildnummer 37
	Bildnummer 38
	Bildnummer 39
	Effectiveness
	Effectiveness
	Bildnummer 42
	Bildnummer 43
	Bildnummer 44
	Mean time to failure
	Bildnummer 46
	Bildnummer 47
	Bildnummer 48
	Bildnummer 49

