How to Specify it!

A guide to writing properties of pure functions.

John Hughes

. @
CHALMERS Q u VI Q

Imagine testing reverse...

Comparison operator

displaying a message
f if not equal
test Reverse =
reverse [1,2,3] === [3,2,1]
Function Sample Expected

under test argument result

Imagine testing reverse...
with QuickCheck

Tell QuickCheck to
generate random
r lists of integers
prop Reverse :: [Int] -> Property
prop Reverse xs =
reverse Xs === 7?77?27
A random But what do we

argument put here?

Imagine testing reverse...
with QuickCheck

prop Reverse :: [Int] -> Property
prop Reverse xs =
reverse xs === predictReverse xs
This is not easier We’re likely to
to write than make the same

reverse! mistakes

Replicating the code in the tests...

Expensive! Low value!

What can we do instead?

prop Reverse :: [Int] -> Property
prop Reverse xs =
reverse (reverse Xs) === Xs
Check a property

of the return
value instead

*Reverse> quickCheck prop Reverse
+++ OK, passed 100 tests.

k 100 random ljsts!

reverse Xs = XS

Passes even if we
defined...

*Reverse> quickCheck test Reverse
*** Failed! Falsified (after 1 test):
[1,2,3] /= [3,2,1]

prop Wrong :: [Int] -> Property
prop Wrong xXs = reverse Xs === XS

*Reverse> quickCheck prop Wrong

*** Fajiled! Falsified (after 3 tests and 3 shrinks):
[0,1] < —
[1,8] /= [0,1] Counterexample:

Almost always [0,1],
sometimes [1,0]

Shrinking

* Discards unnecessary list elements (we need at least two)

* Replaces integers by smaller integers (we need distinct
integers, {0,1} are the two smallest)

Property Based Testing

 Random generation of /ots of test
cases

* Shrinking results in minimal
counterexamples—easy to debug

* Replicating code in the tests is
tempting, but expensive, and
low value

Example

data BST k v = Leaf
| Branch (BST k v) k v (BST k v)

-- the operations under test

find Dl k -> BST k v -> Maybe v
nil T BST k v
insert :: k -> v ->BST k v -> BST k v
delete :: k -> BST k v -=> BST k v
union :: BST k v -=> BST k v -> BST k v

-- auxiliary operations
toList :: BST k v -> [(k, V)]
keys :: BST k v -> [k]

Generator and shrinker

_- generator Generate by

arbitrary = inserting random
do kvs <- arbitrary key-value pairs

return $
foldr (uncurry insert) nil (kvs :: [(k,V)])

-- shrinker
shrink = genericShrink

Shrink using a
generic QuickCheck
mechanism

s there an invarignt?

valid :: BST k v -> Bool

valid Leaf = True

valid (Branch 1 k v r) =
valid 1 && wvalid r &&
all (<k) (keys 1) && all

(>k)

(keys r)

Invariant properties

prop Nilvalid = wvalid (nil)

prop InsertValid k v t = valid (insert k v t)

prop DeleteValid k t valid (delete k t)

prop UnionValid t t' valid (union t t')

insert

=== prop InsertValid from BSTSpec.hs:

*** Failed! Falsified (after 6 tests
0

0

Branch Leaf 0 0 Leaf

=== prop DeleteValid from BSTSpec.hs:

*** Fajiled! Falsified (after 8 tests
0

19 ===

and 8 shrinks):

2 ===

and 7 shrinks):

Branch Leaf 1 0 (Branch Leaf 0 0 Leaf)

=== prop UnionValid from BSTSpec.hs:25 ===

*** Fajijled! Falsified (after 7 tests

and 9 shrinks):

Branch Leaf 0 0 (Branch Leaf 0 0 Leaf)

Leaf

=== prop InsertValid from BSTSpec.hs:19 ===
*** Failed! Falsified (after 6 tests and 8 shrinks):
0
0
Branch Leaf 0 0 Leaf

=== prop DeleteValid from BSTSpec.hs:22 ===
*** Failed! Falsified (after 8 tests and 7 shrinks):
0

Branch Lea@ (Branch Lea Leaf)

=== prop UnionValid from BSTSpec.hs:25 ===

*** Failed! _Falsified (after tests and 9 shrinks):
Branch Lea (Branch Lea Leaf)

Leaf

Testing our tests

prop ArbitraryValid t = valid t

prop ShrinkValid t
all valid (shrink t)

Branch Leaf @ @ (Branch Leaf 0 1 Leaf)
= Branch Leaf 0 0 (Branch Leaf 0 0 Leaf)

What is the postcondition?

“After calling insert, we should be
able to £ind the key inserted, and any
other keys present beforehand”

prop InsertPost k v t k' =
find k' (insert k v t)

if k==k' then Just v else find k' t

k Rarely true?

What is the postcondition of
find-

"After calling £ind,
—if the key is present in the tree, the result is Just wvalue
—if the key is not present, the result is Nothing”

N

How can we
tell this?

By construction!

Don’t test for Can every tree containing
presence—ensure by k be expressed in this
construction \ form?
prop FindPostPresgnt k v t =

find k (insert k v t) === Just v

prop FindPostAbsent k t =
find k (delete k t) === Nothing

Metamorphic properties

"How does changing the input of

insert change its result?”

O(n?)

insert k'’ ! deas
i v

insert k v

insert k v

27 insert k'’ v’ >

Modified call
prop_InsertIé;;rt (k,v) (k',v') t

insert k v (insert k' v' t)

insert k' v' (insert k v t)

k Original call

Relationship

prop InsertInsert (k,v) (k',v') t
insert k v (insert k' v' t)

insert k' v' (insert k v t)

\ TEST
Is this really true?

IT!!

=== prop InsertInsert from BSTSpec.hs:78 ===
*** Fajled! Falsified (after 2 tests and 5 shrinks):

(0,0)
(0,1)

Leaf
Branch Leaf 0 0 Leaf /= Branch lLeaf 0 1 Leaf

Last insertion wins

prop InsertInsert (k,v) (k',v') t
insert k v (insert k' v' t)

if k==k' then insert k v t else
insert k' v' (insert k v t)

=== prop_ InsertlInsert from BSTSpec.hs:78 ===
*** Failed! Falsified (after 2 tests):

(1,0)

(0,0)

Leaf

Branch Leaf 0 0 (Branch Leaf 1 0 Leaf) /=

Branch (Branch Leaf 00 Leaf) 1 O rLeaf

Equivalence for trees

tl =~= t2 =
tolList tl === tolist t2

prop InsertInsert (k,v) (k',v') t
insert k v (insert k' v' t)
i1f k==k' then insert k v t else
insert k' v' (insert k v t)

MET 19

~ MET 2019
i ' ‘“Wmmﬁam&shop O

Model-based properties

abstraction

/ function

<:E?\\ tolist
g

insert k v

277 tolist

D

>

List.insert (k,v)

\ abstract

operation

prop InsertModel (k,v) t =
toList (insert k v t)

L.insert (k,v) (tolist t)

*BSTSpec> quickCheck prop InsertModel

*** Fajled! Falsified (after 13 tests and 7 shrinks):
(1,0)

Branch Leaf 1 0 Leaf

[(116)] /= [(1J@))(1J@)]

\ duplicated key

prop InsertModel (k,v) t =
toList (insert k v t)

L.insert (k,v) (deleteKey k $ tolist t)

Acta Informatica 1, 271—281 (1972)
© by Springer-Verlag 1972

Proof of Correctness of Data Representations
C. A. R. Hoare

Received February 16, 1972

Summary. A powerful method of simplifying the proofs of program correctness
is suggested ; and some new light is shed on the problem of functions with side-effects.

1. Introduction

In the development of programs by stepwise refinement [1-4], the programmer
is encouraged to postpone the decision on the representation of his data until
after he has designed his algorithm, and has expressed it as an ““abstract’’ pro-
gram operating on “abstract” data. He then chooses for the abstract data some
convenient and efficient concrete representation in the store of a computer;
and finally programs the primitive operations required by his abstract program
in terms of this concrete representation. This paper suggests an automatic method
of accomplishing the transition between an abstract and a concrete program,
and also a method of proving its correctness; that is, of proving that the concrete
representation exhibits all the properties expected of it by the “abstract” pro-

Type of property Number of
properties

Invariant
Postcondition
Metamorphic

Model-based

4
5

16
5

Type of property | Number of | Bugs
properties | missed

Invariant
Postcondition
Metamorphic

Model-based

4
5
16
5

O O O U

Effectiveness

prop FindPostPresent k v t =

find k (insert k v t) === Just v
Mayfind Will not find bugs
bug in in delete or
findor union

insert

Effectiveness

2/3

prop FindPostPresent k v t =
find k (insert k v t) === Just v

insert

Type of Number of | Bugs |Effectiveness
property propertles missed

Invariant
Postcondition

Metamorphic

Model-based

5
16
5

-

38%

79%

90%
100%

=== prop_UnionPost from BSTSpec.hs:75 ===
Mean time to failure: 50.04595404595405

ac,.hs:117 ===
Mean time to failure 74626
ec.hs:145 ===
696303694

=== prop_DeleteUnion fr
Mean time to failure: 4

=== prop_UnionDeletelns BSTSpec.hs:167 ===

Mean time to failure: 7 32767233
=== prop_UnionUnionAsso STSpec.hs:185 ===
Mean time to failure: 8 95104895

=== prop_FindUnion from
Mean time to failuré

Logically equivalent!

=== prop_UnionModel from pec.hs:290 ===
Mean time to failure: 8.36

prop UnionPost t t' k =
find k (union t t')

(find k t <|> find k t')

prop UnionModel t t' =
toList (union t t’)

List.sort
(List.unionBy
((==) on f£fst)
(toList t)
(toList t'))

Mean time to failure

o i

Postcondition 160 68

Metamorphic 1 401 61.6

Model-based 5 6.5 5.8

Averaged over seven bugs, and all properties of each type that detect
the bugs

Model-based Metamorphic
Easier to think of than * Do not require a model
postconditions * Easiest to write
Require fewer properties * Good effectiveness
than metamorphic
approach
Are the most effective
properties
Find bugs fastest
Complete specification

How to Specify it!

A Guide to Writing Properties of Pure Functions.

John Hughes

Chalmers University of Technology and Quviq AB, G&teborg, Sweden.

Abstract. Property-based testing tools test software against a specifi-
cation, rather than a set of examples. This tutorial paper presents five
generic approaches to writing such specifications (for purely functional
code). We discuss the costs, benefits, and bug-finding power of each ap-
proach, with reference to a simple example with eight buggy variants.
The lessons learned should help the reader to develop effective property-
based tests in the future.

1

Introduction

Property-based testing (PBT) is an approach to testing software by defining
general properties that ought to hold of the code, and using (usually randomly)
generated test cases to test that they do, while reporting minimized failing tests
if they don’t. Pioneered by QuickCheck! in Haskell [7], the method is now sup-
ported by a variety of tools in many programming languages, and is increas-
ingly popular in practice. Searching for “property-based testing” on Youtube
finds many videos on the topic—most of the top 100 recorded at developer con-
ferences and meetings, where (mostly) other people than this author present
ideas, tools and methods for PBT, or applications that make use of it. Clearly,

N T I (T .S LA [N I N S [DR R [(U DR D T

Michal Palka

- - e Killsr -
Magnus Myreen (Eds.)

~ Trendsin
= Functional Programming

190 remat ol srpen TR 201

Revised Selected Papers

W (20) John Hughes on Twitter: "Ju: X +

<« C & twitter.com/rjmh/status/1146789597235613697

& Tweet

@rjmh

Properties of Pure Functions

<

paper.pdf
PDF Shared with Dropbox
&’ dropbox.com

2]

4:35 PM - Jul 4, 2019 - Twitter Web Client

https://t.co/r5Z4tda5Cn?amp=1

L Skriv har for att séka

John Hughes @ ‘ é' lh e

Just submitted: How to Specify it! A Guide to Writing

. Hope it will prove useful!

18:31
A B2 x 33 SWE N
= 2020-02-12 EZP)

	How to Specify it!��A guide to writing properties of pure functions.
	Imagine testing reverse...
	Imagine testing reverse... �with QuickCheck
	Imagine testing reverse... �with QuickCheck
	Replicating the code in the tests...
	What can we do instead?
	Bildnummer 7
	Bildnummer 8
	Property Based Testing
	Bildnummer 10
	Example
	Generator and shrinker
	Is there an invariant?
	Invariant properties
	insert
	insert
	Testing our tests
	What is the postcondition?
	What is the postcondition of find?
	By construction!
	Metamorphic properties
	Bildnummer 26
	Bildnummer 27
	Bildnummer 28
	Equivalence for trees
	Bildnummer 30
	Model-based properties
	Bildnummer 34
	Bildnummer 35
	Bildnummer 36
	Bildnummer 37
	Bildnummer 38
	Bildnummer 39
	Effectiveness
	Effectiveness
	Bildnummer 42
	Bildnummer 43
	Bildnummer 44
	Mean time to failure
	Bildnummer 46
	Bildnummer 47
	Bildnummer 48
	Bildnummer 49

