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Session Types — Types for Structured Communication

S ::= !T .S ′ send

?T .S ′ receive

⊕{`i : Si} select
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The good old math server

Session type of the server

type S e r v e r = &{
Neg : ? Int . ! Int . end ,
Add : ? Int . ? Int . ! Int . end}
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Duality

Definition

end = end !T .S = ?T .S ⊕{`i : Si} = &{`i : Si}
?T .S = !T .S &{`i : Si} = ⊕{`i : Si}

Undebatably right!
I Kohei Honda (CONCUR 1993): Types for Dyadic Interaction.

I Kaku Takeuchi, Kohei Honda, Makoto Kubo (PARLE1994): An Interaction-based Language and its Typing System.

I Kohei Honda, Vasco Thudichum Vasconcelos, Makoto Kubo (ESOP 1998): Language Primitives and Type Discipline for Structured
Communication-Based Programming.
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Adding Recursion

S ::= . . .

µX .S recursive session

X type variable



A more interesting math server

Session type of the server

type S e r v e r = µ X . &{
Neg : ? Int . ! Int . X ,
Add : ? Int . ? Int . ! Int . X ,
Quit : end}

Session type of the client

type C l i e n t = µ X . ⊕{
Neg : ! Int . ? Int . X ,
Add : ! Int . ! Int . ? Int . X ,
Quit : end}
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Naive Duality

Definition

X = X µX .S = µX .S

Only good for tail-recursive session types
I Kohei Honda, Vasco Thudichum Vasconcelos, Makoto Kubo (ESOP 1998): Language Primitives and Type Discipline for Structured

Communication-Based Programming.
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Ground Truth
A coinductive definition

Definition (Syntactic Duality of Session Types)

If D is a relation on SType then F⊥(D) is the relation on SType defined by:

F⊥(D) = {(end, end)}
∪ {(?T1.S1, !T2.S2) | T1 ≈ T2 and (S1,S2) ∈ D}
∪ {(!T1.S1, ?T2.S2) | T1 ≈ T2 and (S1,S2) ∈ D}
∪ {(S1, µX .S2) | (S1, S2[µX .S2/X ]) ∈ D}
∪ {(µX .S1,S2) | (S1[µX .S1/X ], S2) ∈ D and S2 6= µY .S3}

A relation D on SType is a session duality if D ⊆ F⊥(D). Duality of session types, ⊥,
is the largest session duality.



Outline

A Relational Definition

Bernardi and Hennessy

Lindley and Morris

Mechanization



Bernardi and Hennessy’s Discovery (CONCUR 2014)

I Given S = µX .?X .X

I Then S = µX .!X .X

I But is this correct?

I Let’s rewrite S by unrolling one occurrence of X

I S ′ = µX .?S .X

I S ′ = µX .!S .X

I Now S ∼ S ′ but S 6∼ S ′!
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Bernardi and Hennessy’s Solution

BH Duality

I Compute the message closure of a session type.

I Apply naive duality to the result.

Definition
A session type is message-closed if all message types are closed.

For example

I S = µX .?X .X is not message-closed

I S ′ = µX .?S .X is message-closed
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Bernardi and Hennessy’s Results

I BH duality is sound wrt ⊥
I but the definition of message closure is quite involved and may increase the size of

a type substantially

Definition (Message Closure [BH2014])

For any type T and substitution σ closing for T , the type mclo(T , σ) is defined
inductively by the following rules.

mclo(end, σ) = end mclo(?T .S , σ) = ?(Tσ).mclo(S , σ)

mclo(int, σ) = int mclo(!T .S , σ) = !(Tσ).mclo(S , σ)

mclo(X , σ) = X mclo(µX .S , σ) = µX .mclo(S , [(µX .S)/X ];σ)

Define mclo(S) as mclo(S , ε).



GTV’s optimization

I BH duality can be simplified by symbolic composition of message closure and
naive duality (and deforestation)

Definition (Duality with On-the-fly Message Closure)

For any session type S and substitution σ closing for S , the session type dualof(S , σ) is
defined inductively by the following rules.

dualof(end, σ) = end dualof(?T .S , σ) = !(Tσ). dualof(S , σ)

dualof(!T .S , σ) = ?(Tσ). dualof(S , σ)

dualof(X , σ) = X dualof(µX .S , σ) = µX .dualof(S , [µX .S/X ];σ)

Define dualof(S) as dualof(S , ε).
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Lindley and Morris’s Approach

I Lindley and Morris [ICFP 2016] give another definition of duality

I But it relies on negative type variables . . .

I Each type variable X comes with its companion negative type variable X

I A negative variable X behaves like a suspended application of duality, which gets
triggered by substitution for X .
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Lindley and Morris’s Solution

Definition (Lindley-Morris Duality, Original Version [ICFP2016])

f(end) = end f(X ) = X

f(?T .S) = !T . f(S) f(X ) = X

f(!T .S) = ?T . f(S) f(µX .S) = µX .(f(S){X/X})

Caveat

I The operation . . . {X/X} is not standard substitution.

I It rather swaps X and X .
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GTV’s Results on LM Duality

I Unfortunately, Lindley and Morris just state this definition without proof.

I We prove its soundness in several ways.

I manually
I mechanized in Agda

https://github.com/peterthiemann/dual-session

I We observe that it is size-preserving.

https://github.com/peterthiemann/dual-session
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Some Glimpses at the Agda Code

I Baseline: coinductive definitions of
I session types with recursion
I functional and relational duality

I inductive definition of session types with recursion

I definition of LM duality

I correspondence of LM duality with functional duality (new result)
I Not shown:

I soundness of naive duality for tail recursive session types (new result)
I definition of BH duality and its soundness
I what if recursive types are not normalized? contractiveness . . .

I Details in upcoming paper at the PLACES 2020 workshop



Thank you!
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