
1

How to split a string in Haskell?

How do I split a string on a custom separator? I want the following behavior:
149

split ‘,’ “my,comma,separated,list” → [“my”, “comma”, “separated”, “list”]

split :: Char -> String -> [String]
split c s = case dropWhile (== c) s of

"" -> []
s' -> w : split c s’’

where (w, s'') = break (== c) s'

157

You can implement it like this:

api search with hoogle

2

(a -> b) -> [a] -> [b] Search

map :: (a -> b) -> [a] -> [b]

Data.List

map f xs is the list obtained by applying f to each element of xs, i.e.,

map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn]

hoogle needs synthesis!

3

(a -> Maybe b) -> [a] -> Int Search

No results found!

hoogle+

4

programs

Haskell
libraries

specification

(a -> Maybe b)
-> [a] -> Int H+ 1.

2.
3.
4.

future work

1. scaling up the search

2. eliminating irrelevant results

3. result comprehension

4. user interaction

5

future work

1. scaling up the search

2. eliminating irrelevant results

3. result comprehension

4. user interaction

6

three kinds of irrelevant results

type query:

1. discard arguments

2. always crash

3. duplicates

7

xs:[Maybe a] → d:a → a

\xs d → foldr (head []) d xs

\xs d → d
polymorphism

makes this worse

\xs d → fromMaybe d (head xs)

\xs d → maybe d id (head xs)

substructural types

8

program

structural relevant linear
unrestricted at least once exactly once

\xs d → d

\xs d → bool d d
(null xs)

\xs d → fromMaybe d
(listToMaybe
(catMaybes xs))

variable use

definitely useless

likely useless

test-based filtering

9

candidatessearchtype query

[Maybe a]
→ a → a

results

QuickCheck

1. find an input where c returns a value vs crashes/diverges
(tricky with infinite data structures!)

2. find an input where c1 and c2 are different

H+

future work

1. scaling up the search

2. eliminating irrelevant results

3. result comprehension

4. user interaction

10

future work: comprehension

11

xs:[Maybe a] -> x:a -> a SearchHoogλe+

fromMaybe x (head xs)

fromMaybe x (last xs)

fromMaybe x (listToMaybe (catMaybes xs)) how do I know
what these

programs do?

future work: comprehension

12

xs:[Maybe a] -> x:a -> a SearchHoogλe+

fromMaybe x (head xs)

fromMaybe x (last xs)

fromMaybe x (listToMaybe (catMaybes xs))

[] 0 -> error
[Just 5, Nothing] 0 -> 5

[] 0 -> error
[Just 5, Nothing] 0 -> 0

[] 0 -> 0
[Just 5, Nothing] 0 -> 5

future work

1. scaling up the search

2. eliminating irrelevant results

3. result comprehension

4. user interaction

13

14

