iy,

149

157

stack overflow

How to split a string in Haskell?

How do | split a string on a custom separator? | want the {ghd

You can implem

split :: Char -> String -> [String]
split ¢ s = case dropWhile (== c) s of
"> [
s' ->w : split c s’
where (w, s'') = break (== c) s'

b NaVvior:

d))’ ﬂ'lis.t.u]

api search with hoogle

HoogAe

(a -> b) -> [a] -> [b]

Search

map :: (a -> b) -> [a] -> [b]

Data.List

map f xs isthe list obtained by applying £ to each element of xs, i.e.,

map f [x1, x2, ..., xn] == [f x1, f x2, ..., T xn]

hoogle needs synthesis!

Hoog}\e (a -> Maybe b) -> [a] -> Int Search

No results found!

hoogle+

specification

(a -> Maybe b)
-> [a] -> Int

programs

W=

N\

Haskell
libraries

future work

scaling up the search
eliminating irrelevant results
result comprehension

user interaction

> W=

future work

scaling up the search
eliminating irrelevant results
result comprehension

user interaction

B W=

three kinds of irrelevant results

type query: Xs:[Maybe a] - d:a > a

1. discard arguments . \xs d - d
polymorphism
makes this worse
T
2. always crash \xs d » foldr (head [1)) d xs
3. duplicates \xs d » fromMaybe d (head xs)

\xs d » maybe d id (head xs)

substructural types

variable use structural
program unrestricted

\Xxs d - d Qai

\xs d » bool d d
(null xs) QZ;

\xs d » fromMaybe d
(1listToMaybe
(catMaybes xs))

relevant inear
at least once exactly once

Q — X,

definitely useless

® -0

likely useless

< <

test-based filtering

type query

[Maybe a]
- a - a

—»I_I_|__>

search candidates

N

QuickCheck

>

results

1. find an input where c returns a value vs crashes/diverges
(tricky with infinite data structures!)
2. find an input where c1 and ¢2 are different

future work

scaling up the search
eliminating irrelevant results
result comprehension

user interaction

B W=

10

future work: comprehension

HoogAe+

xs : [Maybe

al] -> x:a -> a

Search

fromMaybe

fromMaybe

fromMaybe

X (head xs)

X (last xs)

X (listToMaybe (catMaybes xs))

how do | know
what these
programs do?

11

future work: comprehension

HoogAe+

xs:[Maybe a] -> x:a -> a Search

fromMaybe x (head xs)

[] © -> error
[Just 5, Nothing] © -> 5

fromMaybe x (last xs)

[] ® -> error
[Just 5, Nothing] © -> ©

fromMaybe x (listToMaybe (catMaybes xs)) @

[] 0 -> 0
[Just 5, Nothing] © -> 5

12

future work

1. scaling up the search

2. eliminating irrelevant results
3. result comprehension

4. user interaction

13

Hoogle+

Welcome to the Hoogle+ Demo

Hoogle+ is a type-driven synthesis engine for Haskell - like Hoogle but able to find compositions of functions. Given a Haskell type, Hoogle+ generates
terms that inhabit this type by composing library components. It supports polymorphism, type classes, and higher-order functions. Available library
components are listed in the side bar.

mint -> xs:[a] -> [a]

Example Specifications:
Arguments

New arg0 arg1 result -
- +

No data
n drop n xs returns the suffix of xs after the first n elements, or [if n > length xs:
\n x5 -> GHC.List.drop n xs drop 6 "Hello World!" == "World!" drop 3 [4.5] drop 3 [1.2] ==
drop 3 [1 == [drop (-1) [1.2] == [1.2] drop O [1. 1.2] It is an instance of
the more general genericDrop, in which n may be of any integral type.
arg0 arg1 result drop :: Int -> [a]
< >
Edit Keep usage . [1,2,3] [. -
. xs :: [a]
Edit Keep usage 5 [1,1,1] [1]

Edit Keep usage 2 [Just 5, Nothing, Just 1] [Just 1]

