
liquid resource types
for verification and synthesis

Nadia Polikarpova
with Tristan Knoth, Di Wang, and Jan Hoffmann

program synthesis

2

codespecification

type-driven program synthesis

3

codespecification

liquid
types

synquid

example: compress a list

Input:

Output:

4

2 3 32 3 2

2 3 2

example: compress a list

5

2 3 32 3 2

2 3 2

22 3 2

synthesizing compress

6

codespecification

??

compress :: xs: List a → {v:CList a | elems v = elems xs}

compress: specification

7

CList aList a

compress :: xs: List a → {v:CList a | elems v = elems xs}

compress: specification

8

compress: generated solution

9

compress xs =
match xs with

Nil → Nil
Cons y ys →

match compress ys with
Nil → Cons y Nil
Cons z zs → if y == z

then compress ys
else Cons y (Cons z zs)

compress: generated solution

10

compress xs =
match xs with

Nil → Nil
Cons y ys →

match compress ys with
Nil → Cons y Nil
Cons z zs → if y == z

then compress ys
else Cons y (Cons z zs)

Cons z zs

11

specification code

compress a list

compress a list
in linear time O(|xs|)

O(2|xs|)

synthesizing efficient programs

12

O(|xs|)

synthesizing efficient programs

specification code

liquid
resource

types

resyn

this talk

1. liquid types + resource bounds

2. type checking

3. value-dependent bounds

4. non-linear bounds

13

[PLDI’19]

under review

this talk

1. liquid types + resource bounds

2. type checking

3. value-dependent bounds

4. non-linear bounds

14

types + refinements

15

{ v:Int | 0 ≤ v }

refinement

types + refinements

16

{ v:Int | 0 ≤ v }

natural numbers

types + refinements

17

{ v:Int | 0 ≤ v }List

lists of nats

types + refinements + resources

18

{ v:Int | 0 ≤ v | 1 }

refinement potential

types + refinements + resources

19

{ v:Int | 0 ≤ v | 1 }List

lists of nats with length units of potential

compress :: xs:List {a | | 1} →
{v:CList a | elems v = elems xs}

compress: liquid resource type

20

synthesizing linear compress

21

codespecification

compress ::
xs:List {a | | 1} →
{v:CList a | …} O(|xs|)

resyn

this talk

1. liquid types + resource bounds

2. type checking

3. value-dependent bounds

4. non-linear bounds

22

checking compress (exponential)

23

compress :: List {a||1} → List a

compress xs =
match xs with

Nil → Nil
Cons y ys →

match compress ys with
Nil → Cons y Nil
Cons z zs → if y == z

then compress ys
else …

checking compress (exponential)

24

List a

compress xs =
match xs with

Nil → Nil
Cons y ys →

match compress ys with
Nil → Cons y Nil
Cons z zs → if y == z

then compress ys
else …

xs: List {a||1}

compress: List {a||1} → List a

use available resources
to pay for recursive calls

and terms that require potential

checking compress (exponential)

25

List a

compress xs =
match xs with

Nil → Nil
Cons y ys →

match compress ys with
Nil → Cons y Nil
Cons z zs → if y == z

then compress ys
else …

ys: List {a||1}

compress: List {a||1} → List a

y: {a||1}

checking compress (exponential)

26

List a

compress xs =
match xs with

Nil → Nil
Cons y ys →

match compress ys with
Nil → Cons y Nil
Cons z zs → if y == z

then compress ys
else …

ys: List {a||1}

compress: List {a||1} → List a

checking compress (exponential)

27

List a

compress xs =
match xs with

Nil → Nil
Cons y ys →

match compress (ys :: List {a||p}) with
Nil → Cons y Nil
Cons z zs → if y == z

then compress (ys :: List {a||q})
else …

compress: List {a||1} → List a

ys: List {a||1}

checking compress (exponential)

28

List a

compress xs =
match xs with

Nil → Nil
Cons y ys →

match compress (ys :: List {a||p}) with
Nil → Cons y Nil
Cons z zs → if y == z

then compress (ys :: List {a||q})
else …

compress: List {a||1} → List a

1. total potential must be
partitioned into two uses:

ys: List {a||1}

Constraints: ∃p,q:

1 = p + q

checking compress (exponential)

29

List a

compress xs =
match xs with

Nil → Nil
Cons y ys →

match compress (ys :: List {a||p}) with
Nil → Cons y Nil
Cons z zs → if y == z

then compress (ys :: List {a||q})
else …

compress: List {a||1} → List a

ys: List {a||1}

Constraints: ∃p,q:

1 = p + q

p ≥ 1
2. p must be enough to call
compress

checking compress (exponential)

30

List a

compress xs =
match xs with

Nil → Nil
Cons y ys →

match compress (ys :: List {a||p}) with
Nil → Cons y Nil
Cons z zs → if y == z

then compress (ys :: List {a||q})
else …

compress: List {a||1} → List a

ys: List {a||1}

Constraints: ∃p,q:

1 = p + q

p ≥ 1
3. q must be enough to call
compress

q ≥ 1

checking compress (exponential)

31

List a

compress xs =
match xs with

Nil → Nil
Cons y ys →

match compress (ys :: List {a||p}) with
Nil → Cons y Nil
Cons z zs → if y == z

then compress (ys :: List {a||q})
else …

compress: List {a||1} → List a

ys: List {a||1}

Constraints: ∃p,q:

1 = p + q

p ≥ 1

q ≥ 1

checking compress (linear)

32

List a

compress xs =
match xs with

Nil → Nil
Cons y ys →

match compress ys with
Nil → Cons y Nil
Cons z zs → if y == z

then Cons z zs
else Cons y (Cons z zs)

ys: List {a||1}

compress: List {a||1} → List a

y: {a||1}

all potential in ys
goes here

pays for
recursive call

no potential
consumed here

subtyping

33

Γ ⇒ 𝑟 ⇒ 𝑟′ Γ ⇒ 𝑝 ≥ 𝑝′

Γ ⊢ 𝐵 𝑟 𝑝 <: 𝐵 𝑟′ 𝑝′

sharing

34

Γ1 ⊢ 𝑒 ∷ List 𝑇′
Γ2 ⊢ 𝑒1 ∷ 𝑇

Γ2, 𝑥: 𝑇
′, 𝑥𝑠: List 𝑇′ ⊢ 𝑒1 ∷ 𝑇

Γ1 + Γ2 ⊢ match 𝑒 with 𝑒1; 𝜆𝑥 𝑥𝑠. 𝑒2 ∷ 𝑇

resource polymorphism for free

35

compress :: List {a | | 1} → List a

compress2 xs = compress (compress xs)

compress2 :: List {b | | 2} → List b

resource polymorphism for free

36

compress :: List {a | | 1} → List a

compress2 xs = compress[b / a] (compress[{b||1} / a] xs)

compress2 :: List {b | | 2} → List b

this talk

1. liquid types + resource bounds

2. type checking

3. value-dependent bounds

4. non-linear bounds

37

value-dependent potential

38

{ v:Int | 0 ≤ v | v }

nat with potential equal to its value

insert into sorted list

39

insert x xs =
match xs with

Nil → Cons x Nil
Cons y ys →

if x ≤ y
then Cons x xs
else Cons y (insert x ys)

insert :: x:a → xs:SList {a | | 1}
→ SList a

makes one step
per element < x?

insert: dependent bound

40

insert x xs =
match xs with

Nil → Cons x Nil
Cons y ys →

if x ≤ y
then Cons x xs
else Cons y (insert x ys)

insert :: x:a → xs:SList {a | | v < x ? 1 : 0}
→ SList a

y: {a|| v < x ? 1 : 0}

pays for
recursive call

this talk

1. liquid types + resource bounds

2. type checking

3. value-dependent bounds

4. non-linear bounds

41

insertion sort

42

insert x xs =
match xs with
Nil → Cons x Nil
Cons y ys →

if x ≤ y
then Cons x xs
else Cons y (insert x ys)

sort xs =
match xs with
Nil → Nil
Cons y ys →

insert y (sort ys)

makes one step
per element < x

makes one step per out-of-
order pair of elements

insert :: x:a
→ xs:SList {a| |v < x ? 1 : 0}
→ SList a

sort :: ???

data SList a where
Nil :: SList a
Cons :: h:a →

t:SList {a | h ≤ v} →
SList a

SList a →List a →

43

List a
List a

List a

sorted list via inductive refinements

data SList a where
Nil :: SList a
Cons :: h:a →

t:SList {a | h ≤ v} →
SList a

SList a →

44

sorted list via inductive refinements

data SList a where
Nil :: SList a
Cons :: h:a →

t:SList {a | h ≤ v} →
SList a

45

sorted list via inductive refinements

quadratic list via inductive potentials

46

data SList a where
Nil :: SList a
Cons :: h:a →

t:SList {a | h ≤ v} →
SList a

data QList a where
Nil :: QList a
Cons :: h:a →

t:QList {a||v < x ? 1 : 0} →
QList a
QList {a||1} →

generality via abstract refinements

47

data SList a where
Nil :: SList a
Cons :: h:a →

t:SList {a | h ≤ v} →
SList a

data List a <p: a → a → Bool> where
Nil :: List a <p>
Cons :: h:a →

t: List {a | p h v} <p> →
List a <p>

type SList a = List a < _0 ≤ _1 >

generality via abstract potentials

48

data List a
<p: a → a → Bool> where

Nil :: List a <p>
Cons :: h:a →

t: List {a | p h v} <p> →
List a <p>

type SList a
= List a < _0 ≤ _1 >

data List a
<q: a → a → Int> where

Nil :: List a <q>
Cons :: h:a →

t: List {a||q h v} <q> →
List a <q>

type QList a
= List a < _1 < _0 ? 1 : 0 >

insertion sort

49

insert x xs =
match xs with
Nil → Cons x Nil
Cons y ys →

if x ≤ y
then Cons x xs
else Cons y (insert x ys)

sort xs =
match xs with
Nil → Nil
Cons y ys →

insert y (sort ys)

insert :: a
→ SList {a| |v < x ? 1 : 0}
→ SList a

sort :: List a <_1 < _0 ? 1 : 0 >
→ SList a

liquid resource types

1. liquid types + resource bounds

2. type checking

3. value-dependent bounds

4. non-linear bounds

+ talk to me about:

• “logarithmic” bounds via trees

• linear types for program synthesis

50

