Adventures in Quantitative
Type Theory

Stephanie Weirich
University of Pennsylvania

Joint work with Pritam Choudhury

WG 2.8 Zion - 2020

A month in the l[aboratory can
often save an hour in the library.

An hour in the library can lead to
a month in the laboratory.

Recent work

* Conor McBride. | Got Plenty o’ Nuttin’. WadlerFest 2016

* Bernardy et al. Linear Haskell: practical linearity in a higher-order
polymorphic language. POPL 2018

* Bob Atkey. The Syntax and Semantics of Quantitative Type Theory.
LICS 2018

* Andreas Abel. On the Syntax and Semantics of Quantitative Typing.
Talk given at Workshop on Mixed Inductive-Coinductive Reasoning.
April 2018

* Orchard, Liepelt, Eades. Quantitative Program Reasoning with Graded
Modal Types. ICFP 2019

* And many more...

Motivation: Haskell + Dependent Types

* Dependent Haskell should be able to express run-time irrelevance (i.e.
it should preserve Haskell's type erasure semantics)

e Current status: ICC-based. Curry-style system that omits irrelevant
arguments from terms.
I'Fa:V(z:Type), v — x
I'FaOod:Int — Int

e Current oops: | don't see how to make this work for Strong-2 types
'k (O, 3) : A(z:Type). x
I, y: (32 Type.x) F snd y : fst y

Enter Quantitative Type Theory

* Want to replace mechanism for irrelevance.
* Inspiration: LinearHaskell is based on Quantitative Type Theory.

* McBride/Atkey showed that a dependently-typed version of
Quantitative Type Theory can generalize irrelevance (things used 0O-
times) and linearity (things used 1 time).

Let's use that.

What is QTT?

* Tracks the demands that computations make on the context
* Generalizes linear types (cf. Linear Haskell) and Bounded Linear Types

 Also useful for
* Irrelevance in dependent type theory (cf. Agda, Idris)
» Security levels
 Differential privacy
e Cardinality analysis in compilers

* Related to coeffects and graded comonads (cf. Granule project)

Quantitative Type Theory

* Typing context tracks the number e | .q
of times a variable is used F = F’ Lo A

* Flexible: Quantities (aka resources
or usages) come described by an

arbitrary semiring q g O ‘ 1 |

e Operations must satisfy usual
properties of semirings (i.e. d1 _|_ g2
identity elements, assoc, comm, C]1 . q2

distributivity)

QTT: additional operations

* Scalar multiplication q-I
/ Contexts must exactly match
e Pointwise addition r, + T, i.e. this operation is only
defined when
O ' Fl — O . F2

* Resource partial order ¢; < ¢,

o g1 < g implies ¢ +7r < @ +r

o g1 < g impliesq -r< g7

Quantitative type system (Version 1)

0.y, z:' A0z : A

Record exactly one variable use

Fll—a:(A—>qB)
F2|_bZA
F1+(QF2)|_CLbB

Multiply the resources needed by the
argument in an application

'z TAFa:B
' Azx.a:(A—7B)

Record how many x's are needed in
the function type

Fll_CLIA
't <1
FQl‘CLIA

Can ask for more than you need
(optional rule)

Simple Example: Boolean Semiring

e Semiring includes only 0 (absent), 1 = w (present)

* NOT linear types, because1+1=1

* Sample derivation .0 Int, f :! (Int —° Int)
[o=2z:1Int,f:" (Int =" Int)

IiFf:Int—="Int TyF 2z:Int

Fl +OF2 l—fz:Int

Simple Example: Subusage

e Semiring includes only 0 (absent), 1 = w (present)
* More typing derivations available with 0 £ w
* Degenerates to STLC

z:Int,y " Int - 2 : Int z:VInt,y:' Int -y : Int
z:'Int,y:' Int - 2 : Int z: Int,y:' Int -y : Int
z ' Int - A\y.z : Int —' Int z P Int - A\y.y : Int —' Int

kA Ay.z:Int - Int > Int @+ Az)\y.y: Int —' Int —' Int

Linearity

e Semiring includes 0 (absent), 1 (linear), w (unrestricted)

* Only include reflexivity in <
*1+1=uw,so variables marked 1 may be used only once

 [Exercise for audience: work out another example]

Example: Linearity++

irr
lin
aft
rel
unr

41 + @2

> 1> 1> [l> (>

> > >

{O} * Five elements in semiring
{1} e Haveirr=0andlin=1
* Have to approximate (rel + rel = rel)
{O, 1} * Do not have (or want)0<1
{1 9 } e Valid to omit aff & rel
Y) c " . . .
Valid to include all subsets of N
{O, 1, 2, . } (Bounded Linear Logic)

{n1+n9 | N1 € q1,n2 € g2}
{n1-n9 | n1 € q1,n2 € ¢}
g1 < ¢

Properties

Lemma 1 (Substitution) If I' - a : A and I'1,z :7 A, To = b : B then
'y +q-1'),To - b{a/z}: B

Lemma 2 (Weakening) IfI'1,I>Fb: B thenT'1,2:° A T2 b: B

Lemma 3 (Preservation) IfI'Fa: A anda~ a’ then T F o : A.

What about dependent types?

* Want to separate runtime uses of a variable (resourced) from
compile-time uses (unrestricted) so that variables can appear freely in

types
e Conor's idea: Distinguish by annotating the judgement
I''ra:!A correspondstol’ Fa: A
't a:®A only uses compile-time resources

* General multiplication principle
IfI'a:2A then rI' +F a:"7 A

Quantitative type system (Version 2)

I''v: YA+ a: B
0-I'1,z - A,O'FQ Fz: A I'FAx.a: (A — 1 B)

'z : 7T AF ag:% B

0-I't,z:9A,0T'yFz:9A4 T+ Az.a:% (A —? B)

Quantitative type system (Version 2)

IMFa:A I'MFa:(A—7B)
't <TI' [CFb: A
['oFa:A F1+(QF2)|_CLbB
MFa:TA I''kFa:*(A—?B)
F1§F2 FQI_b:qOA

FQ"&ZQA F1+(q-F2)|—ab:qoB

What is wrong with Iy Fa:% (A—?B)

this rule? Tom o™ 4
Fl ar (qFQ) - ab:? B

* Preservation theorem requires a substitution lemma

* The substitution lemma needs the following two properties, which do
not hold for arbitrary semirings.

Lemma 4 (Splitting) IfT'F a:97" A then there exists I'y +T'y = T' such that
I'Fa:924 andT’'1 F a:" A.

Lemma 5 (Factoring) If ' - a :9" A then there exists q¢-T'y = I' such that
Fl Fa:" A.

What can we do instead?

Fli—a:ao (A—)q B)
Fgl—bialA
0'1:0iff(0'0'q:0)
I'M+q-T'y-ab:° B

e Atkey: restrict usages to
those that we can factor. i.e.
onlyOor1l

* Us: revise rules with special
cases for 0 and 1 (no need to
restrict judgement overall)

APpP
Fl - CLZqO (A %q B)
ILHb:t A

F1+(Q°QO)'F2|_ab:qOB
APPO
Fll—a:qo (A—)q B)
gd-q=70
0% A
Fll—ab:qOB

Two different substitution lemmas

Lemma 6 (Substitution) IfI'F a :®* A and I'y,x :%* A, T's = b :%2 B then
Ty +q-1"), T2 - b{a/z}:22 B

Lemma 7 (Substitution-1) If ' a:' A and I'y,z : % A,Ty - b :2 B then
(Fl - q1°F),F2 = b{a/a:} 2 B

Lemma 8 (Substitution-0) If '+ a :* A and I'y,z :* A, Ty + b :? B then
['y,ToF b{a/x}:9 B

Irrelevance needs more from semiring

Lemma 8 (Substitution-0) IfT'+ a :* A and I'y,z :° A, To F b :7 B then
['1,I'sFb{a/z} 9B

e For all ¢, ¢ <0 implies ¢ = 0.
e For all ¢, 7, ¢ + » = 0 implies ¢ = 0 and r = 0.

e Forall ¢, r, ¢- =0 implies ¢ =0 or r = 0.

Where are we?

* New variant of Atkey's fix of Conor's version of QTT
e Slightly modified application rule
e Addition of subusage rule

* CAVEAT: So far, simple types only

* Weakening, two Substitution lemmas, and Preservation
theorem proved in Coq

INOTE: Coq is not really the right tool for this work.]

What next?

* Extend to dependent types

* Also, exploring alternative approaches that do not add usage
annotations to the judgement.

* Longer term: subtyping? usage polymorphism?
* Longer term: relation to graded modal types?

