
Adventures in Quantitative 
Type Theory

Stephanie Weirich
University of Pennsylvania

Joint work with Pritam Choudhury

WG 2.8 Zion - 2020



A month in the laboratory can 
often save an hour in the library.
--Frank Westheimer



An hour in the library can lead to 
a month in the laboratory.



Recent work
• Conor McBride. I Got Plenty o’ Nuttin’. WadlerFest 2016
• Bernardy et al. Linear Haskell: practical linearity in a higher-order 

polymorphic language. POPL 2018
• Bob Atkey. The Syntax and Semantics of Quantitative Type Theory. 

LICS 2018
• Andreas Abel. On the Syntax and Semantics of Quantitative Typing.

Talk given at Workshop on Mixed Inductive-Coinductive Reasoning. 
April 2018
• Orchard, Liepelt, Eades. Quantitative Program Reasoning with Graded 

Modal Types. ICFP 2019
• And many more…



Motivation: Haskell + Dependent Types

• Dependent Haskell should be able to express run-time irrelevance (i.e. 
it should preserve Haskell's type erasure semantics)
• Current status: ICC-based. Curry-style system that omits irrelevant 

arguments from terms.
Γ ⊦ a : ∀(x:Type), x → x
Γ ⊦ a ☐ 3 : Int → Int 

• Current oops: I don't see how to make this work for Strong-Σ types 
Γ ⊦ (☐, 3) : ∃(x:Type). x
Γ, y: (∃x:Type.x) ⊦ snd y : fst y



Enter Quantitative Type Theory

• Want to replace mechanism for irrelevance. 
• Inspiration: LinearHaskell is based on Quantitative Type Theory. 
• McBride/Atkey showed that a dependently-typed version of 

Quantitative Type Theory can generalize irrelevance (things used 0-
times) and linearity (things used 1 time).

Let's use that.



What is QTT?

• Tracks the demands that computations make on the context
• Generalizes linear types (cf. Linear Haskell) and Bounded Linear Types
• Also useful for

• Irrelevance in dependent type theory (cf. Agda, Idris)
• Security levels
• Differential privacy
• Cardinality analysis in compilers

• Related to coeffects and graded comonads (cf. Granule project) 



Quantitative Type Theory

• Typing context tracks the number 
of times a variable is used
• Flexible: Quantities (aka resources 

or usages) come described by an 
arbitrary semiring
• Operations must satisfy usual 

properties of semirings (i.e. 
identity elements, assoc, comm, 
distributivity)



QTT: additional operations

• Scalar multiplication        q ⋅ Γ

• Pointwise addition           Γ1 + Γ2

• Resource partial order    q1 ≤ q2

Contexts must exactly match
i.e. this operation is only 

defined when
0 ⋅ Γ1 = 0 ⋅ Γ2



Quantitative type system (Version 1)

Record how many x's are needed in 
the function type

Multiply the resources needed by the 
argument in an application

Record exactly one variable use 

Can ask for more than you need 
(optional rule)



Simple Example: Boolean Semiring

• Semiring includes only 0 (absent), 1 = 𝜔 (present)
• NOT linear types, because 1 + 1 = 1  
• Sample derivation



Simple Example: Subusage

• Semiring includes only 0 (absent), 1 = 𝜔 (present)
• More typing derivations available with 0 ≤ 𝜔
• Degenerates to STLC  



Linearity

• Semiring includes  0 (absent), 1 (linear), 𝜔 (unrestricted) 
• Only include reflexivity in ≤
• 1 + 1 = 𝜔, so variables marked 1 may be used only once

• [Exercise for audience: work out another example]



Example: Linearity++
• Five elements in semiring 
• Have irr = 0 and lin = 1
• Have to approximate (rel + rel = rel)
• Do not have (or want) 0 ≤ 1
• Valid to omit aff & rel
• Valid to include all subsets of ℕ

(Bounded Linear Logic)



Properties



What about dependent types?

• Want to separate runtime uses of a variable (resourced) from 
compile-time uses (unrestricted) so that variables can appear freely in 
types
• Conor's idea:   Distinguish by annotating the judgement

Γ ⊦ a :1 A corresponds to Γ ⊦ a : A
Γ ⊦ a :0 A only uses compile-time resources

• General multiplication principle
If Γ ⊦ a :q A then r⋅Γ ⊦ a :r⋅q A



Quantitative type system (Version 2)



Quantitative type system (Version 2)



What is wrong with 
this rule?

• Preservation theorem requires a substitution lemma
• The substitution lemma needs the following two properties, which do 

not hold for arbitrary semirings.



What can we do instead?

• Atkey:  restrict usages to 
those that we can factor. i.e. 
only 0 or 1
• Us:  revise rules with special 

cases for 0 and 1 (no need to 
restrict judgement overall)



Two different substitution lemmas



Irrelevance needs more from semiring



Where are we?

• New variant of Atkey's fix of Conor's version of QTT
• Slightly modified application rule
• Addition of subusage rule

• CAVEAT: So far,  simple types only
•Weakening, two Substitution lemmas, and Preservation 

theorem proved in Coq
[NOTE: Coq is not really the right tool for this work.]



What next?

• Extend to dependent types
• Also, exploring alternative approaches that do not add usage 

annotations to the judgement. 

• Longer term: subtyping?  usage polymorphism?
• Longer term: relation to graded modal types?


